63
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Frequency Regulation of Microgrid with Renewable Sources Using Intelligent Adaptive Virtual Inertia Control Approach

, &
Received 06 Jul 2023, Accepted 26 Nov 2023, Published online: 21 Jan 2024

References

  • N. Pogaku, M. Prodanovic, and T. C. Green, “Modeling, analysis and testing of autonomous operation of an inverter-based microgrid,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 613–625, Mar. 2007. DOI: 10.1109/TPEL.2006.890003.
  • K. De Brabandere et al., “A voltage and frequency droop control method for parallel inverters,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1107–1115, Jul. 2007. DOI: 10.1109/TPEL.2007.900456.
  • H. Alrajhi Alsiraji and R. El‐Shatshat, “Comprehensive assessment of virtual synchronous machine based voltage source converter controllers,” IET Gener. Transm. Distrib., vol. 11, no. 7, pp. 1762–1769, May 2017. DOI: 10.1049/iet-gtd.2016.1423.
  • J. Liu, Y. Miura, H. Bevrani, and T. Ise, “Enhanced virtual synchronous generator control for parallel inverters in microgrids,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2268–2277, Sep. 2017. DOI: 10.1109/TSG.2016.2521405.
  • W. S. Im, C. Wang, W. Liu, L. Liu, and J. M. Kim, “Distributed virtual inertia based control of multiple photovoltaic systems in autonomous microgrid,” IEEE/CAA J. Autom. Sin., vol. 4, no. 3, pp. 512–519, Jul. 2017. DOI: 10.1109/JAS.2016.7510031.
  • Y. Ma, W. Cao, L. Yang, F. Wang, and L. M. Tolbert, “Virtual synchronous generator control of full converter wind turbines with short-term energy storage,” IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 8821–8831, Nov. 2017. DOI: 10.1109/TIE.2017.2694347.
  • T. Kerdphol, F. S. Rahman, Y. Mitani, M. Watanabe, and S. K. Küfeo˘ Glu, “Robust virtual inertia control of an islanded microgrid considering high penetration of renewable energy,” IEEE Access, vol. 6, pp. 625–636, 2018. DOI: 10.1109/ACCESS.2017.2773486.
  • H. Ali, G. Magdy, B. Li, G. Shabib, A. A. Elbaset,D. Xu, and Y. Mitani, “A new frequency control strategy in an islanded microgrid using virtual inertia control-based coefficient diagram method,” IEEE Access, vol. 7, pp. 16979–16990, 2019. DOI: 10.1109/ACCESS.2019.2894840.
  • N. Sockeel, J. Gafford, B. Papari, and M. Mazzola, “Virtual inertia emulator-based model predictive control for grid frequency regulation considering high penetration of inverter-based energy storage system,” IEEE Trans. Sustain. Energy, vol. 11, no. 4, pp. 2932–2939, 2020. DOI: 10.1109/TSTE.2020.2982348.
  • A. Saleh et al., “Manta Ray foraging optimization for the virtual inertia control of islanded microgrids including renewable energy sources,” Sustainability, vol. 14, no. 7, pp. 4189, 2022. DOI: 10.3390/su14074189.
  • A. Khazali, N. Rezaei, H. Saboori, and J. M. Guerrero, “Using PV systems and parking lots to provide virtual inertia and frequency regulation provision in low inertia grids,” Electr. Power Syst. Res., vol. 207, p. 107859, 2022. DOI: 10.1016/j.epsr.2022.107859.
  • H. Abubakr, T. H. Mohamed, M. M. Hussein, J. M. Guerrero, and G. Agundis-Tinajero, “Adaptive frequency regulation strategy in multi-area microgrids including renewable energy and electric vehicles supported by virtual inertia,” Electr.Power Energy Syst., vol. 129, p. 106814, 2021. DOI: 10.1016/j.ijepes.2021.106814.
  • G. Magdy, G. Shabib, A. A. Elbaset, and Y. Mitani, “A novel coordination scheme of virtual inertia control and digital protection for microgrid dynamic security considering high renewable energy penetration,” IET Renew. Power Gener., vol. 13, no. 3, pp. 462–474, 2019. DOI: 10.1049/iet-rpg.2018.5513.
  • R. Mandal and K. Chatterjee, “Virtual inertia emulation and RoCoF control of a microgrid with high renewable power penetration,” Electr. Power Syst. Res., vol. 194, p. 107093, 2021. DOI: 10.1016/j.epsr.2021.107093.
  • R. K. Khadanga, D. Das, A. Kumar, and S. Panda, “An improved parasitism predation algorithm for frequency regulation of a virtual inertia control based AC microgrid,” Energy Sources A: Recovery Util. Environ. Eff., vol. 44, no. 1, pp. 1660–1677, 2022. DOI: 10.1080/15567036.2022.2055231.
  • S. W. Ali et al., “Finite-control-set model predictive control for low-voltage-ride-through enhancement of PMSG based wind energy grid connection systems,” Mathematics, vol. 10, no. 22, p. 4266, 2022. DOI: 10.3390/math10224266.
  • M. M. Ismail, A. F. Bendary, and M. Elsisi, “Optimal design of battery charge management controller for hybrid system PV/wind cell with storage battery,” Int. J. Power Energy Convers., vol. 11, no. 4, pp. 412–429, 2020. DOI: 10.1504/IJPEC.2020.110018.
  • M. Elsisi, “New design of adaptive model predictive control for energy conversion system with wind torque effect,” J. Clean. Prod., vol. 240, p. 118265, 2019. DOI: 10.1016/j.jclepro.2019.118265.
  • M. A. E. Mohamed, S. M. R. Mohamed, E. M. M. Saied, M. Elsisi, C.-L. Su, and H. A. Hadi, “Optimal energy management solutions using artificial intelligence techniques for photovoltaic empowered water desalination plants under cost function uncertainties,” IEEE Access, vol. 10, pp. 93646–93658, 2022. DOI: 10.1109/ACCESS.2022.3203692.
  • M. Sadiq et al., “Continuous-control-set model predictive control for three-level DC–DC converter with unbalanced loads in bipolar electric vehicle charging stations,” Mathematics, vol. 10, no. 19, p. 3444, 2022. DOI: 10.3390/math10193444.
  • M. N. Ali, M. Soliman, M. A. Ebrahim, and M. Elsisi, “D-decomposition-based multi-objective robust resilient control for blade pitch of wind energy conversion system,” Int. J. Electr. Power Energy Syst., vol. 146, p. 108781, 2023. DOI: 10.1016/j.ijepes.2022.108781.
  • T. Kerdphol, M. Watanabe, K. Hongesombut, and Y. Mitani, “Self-adaptive virtual inertia control-based fuzzy logic to improve frequency stability of microgrid with high renewable penetration,” IEEE Access, vol. 7, pp. 76071–76083, 2019. DOI: 10.1109/ACCESS.2019.2920886.
  • S. Fu et al., “Power oscillation suppression in multi-VSG grid with adaptive virtual inertia,” Electr. Power Energy Syst., vol. 135, p. 107472, 2022. DOI: 10.1016/j.ijepes.2021.107472.
  • A. M. Othman and A. A. El-Fergany, “Adaptive virtual-inertia control and chicken swarm optimizer for frequency stability in powergrids penetrated by renewable energy sources,” Neural Comput. Appl., vol. 33, no. 7, pp. 2905–2918, 2021. DOI: 10.1007/s00521-020-05054-8.
  • M. A. Torres L., L. A. C. Lopes, L. A. Morán T., and J. R. Espinoza C., “Self-tuning virtual synchronous machine: a control strategy for energy storage systems to support dynamic frequency control,” IEEE Trans. Energy Convers., vol. 29, no. 4, pp. 833–840, Dec. 2014. DOI: 10.1109/TEC.2014.2362577.
  • N. Soni, S. Doolla, and M. C. Chandorkar, “Improvement of transient response in microgrids using virtual inertia,” IEEE Trans. Power Deliv., vol. 28, no. 3, pp. 1830–1838, Jul. 2013. DOI: 10.1109/TPWRD.2013.2264738.
  • C. Andalib-Bin-Karim, X. Liang, and H. Zhang, “Fuzzy-secondary-controller-based virtual synchronous generator control scheme for interfacing inverters of renewable distributed generation in microgrids,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1047–1061, Mar.–Apr. 2018. DOI: 10.1109/TIA.2017.2773432.
  • J. Fang, H. Li, Y. Tang, and F. Blaabjerg, “Distributed Power System Virtual Inertia Implemented by Grid-Connected Power Converters,” IEEE Trans. Power Electron., vol. 33, no. 10, pp. 8488–8499, Oct. 2018. DOI: 10.1109/TPEL.2017.2785218.
  • S. Mishra, P. C. Nayak, R. C. Prusty, and S. Panda, “Modified multiverse optimizer technique-based two degree of freedom fuzzy PID controller for frequency control of microgrid systems with hydrogen aqua electrolyzer fuel cell unit,” Neural Comput. Appl., vol. 34, no. 21, pp. 18805–18821, 2022. DOI: 10.1007/s00521-022-07453-5.
  • N. Chopra and M. M. Ansari, “Golden jackal optimization: a novel nature-inspired optimizer for engineering applications,” Expert Syst. Appl., vol. 198, p. 116924, 2022. DOI: 10.1016/j.eswa.2022.116924.
  • A. E. Ezugwu, J. O. Agushaka, L. Abualigah, S. Mirjalili, and A. H. Gandomi, “Prairie dog optimization algorithm,” Neural Comput. Appl., vol. 34, no. 22, pp. 20017–20065, 2022. DOI: 10.1007/s00521-022-07530-9.
  • J. O. Agushakaa, A. E. Ezugwua, and L. Abualigah, “Dwarf mongoose optimization algorithm,” Comput. Methods Appl. Mech. Eng., vol. 391, p. 11457, 2022.
  • J. O. Agushaka, A. E. Ezugwu, and L. Abualigah, “Gazelle optimization algorithm: a novel nature-inspired metaheuristic optimizer,” Neural Comput. Appl., vol. 35, no. 5, pp. 4099–4131, 2023. DOI: 10.1007/s00521-022-07854-6.
  • G. Hu, Y. Zheng, L. Abualigah, and A. G. Hussien, “DETDO: an adaptive hybrid dandelion optimizer for engineering optimization,” Adv. Eng. Inform., vol. 57, pp. 102004, 2023. DOI: 10.1016/j.aei.2023.102004.
  • M. Zare et al., “A global best-guided firefly algorithm for engineering problems,” J. Bionic Eng., vol. 20, no. 5, pp. 2359–2388, 2023. DOI: 10.1007/s42235-023-00386-2.
  • S. Khalilpourazari and S. Khalilpourazary, “An efficient hybrid algorithm based on water cycle and moth-flame optimization algorithms for solving numerical and constrained engineering optimization problems,” Soft Comput., vol. 23, no. 5, pp. 1699–1722, 2019. DOI: 10.1007/s00500-017-2894-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.