41
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation on Voltage Stability in a Distributed Generation Power Grid Influenced by PMSG and DFIG Based Wind Energy Conversion System

&
Received 16 Jun 2023, Accepted 17 Dec 2023, Published online: 29 Dec 2023

References

  • L. R. Amjith and B. Bavanish, “A review on biomass and wind as renewable energy for sustainable environment,” Chemosphere, vol. 293, pp. 133579, 2022. DOI: 10.1016/j.chemosphere.2022.133579.
  • A. G. Olabi and M. A. Abdelkareem, “Renewable energy and climate change,” Renew. Sustain. Energy Rev., vol. 158, pp. 112111, 2022. DOI: 10.1016/j.rser.2022.112111.
  • D. Khobragade and M. K. Nigam, “Stability analysis of DFIG wind power system using PI controller with static feedback,” Int. J. Adv. Comp. Technol., vol. 11, no. 3, pp. 7–10, 2022.
  • C. T. Ma and Y. H. Ho, “Design and hardware implementation of a variable speed wind turbine emulator system,” J. Innovative Technol., vol. 4, no. 1, pp. 13–21, 2022.
  • R. P. Naidu, A. Anusree, K. V. Subbarao, K. K. Sri and K. M. Narayana, “A review on PMSG based wind energy conversion system,” J. Algebraic Statist., vol. 13, no. 3, pp. 1058–65, 2022.
  • M. K. K. Prince, M. T. Arif, A. Gargoom, A. M. T. Oo and M. E. Haque, “Modeling, parameter measurement, and control of PMSG-based grid-connected wind energy conversion system,” J. Modern Power Syst. Clean Energy, vol. 9, no. 5, pp. 1054–1065, 2021. DOI: 10.35833/MPCE.2020.000601.
  • A. Petersson, T. Thiringer, L. Harnefors and T. Petru, “Modeling and experimental verification of grid interaction of a DFIG wind turbine,” IEEE Trans. On Energy Conver., vol. 20, no. 4, pp. 878–886, 2005. DOI: 10.1109/TEC.2005.853750.
  • V. Yaramasu and B. Wu, “Power electronics for high-power wind energy conversion systems,” in Encyclopedia of Sustainable Technologies, Elsevier, pp. 37–49, 2017. DOI: 10.1016/B978-0-12-409548-9.10094-6.
  • I. Ngamroo, “Review of DFIG wind turbine impact on power system dynamic performances,” IEE J. Trans. Elec. Eng., vol. 12, no. 3, pp. 301–311, 2017. DOI: 10.1002/tee.22379.
  • R. C. Bansal, T. S. Bhatti and D. P. Kothari, “Some aspects of grid connected wind electric energy conversion system,” Interdis. J. Institut. Eng. (India), vol. 82, pp. 25–28, 2001.
  • T. Ackermann and L. Soder, “An overview of wind energy-status 2002,” Renew. Sustain. Energy Rev., vol. 6, no. 1–2, pp. 67–127, 2002. DOI: 10.1016/S1364-0321(02)00008-4.
  • World Wind Energy Report. 2009. World wind energy association.
  • M. T. Abolhassani, P. Enjeti, and H. Toliyat, “Integrated doubly fed electric alternator/active filter (IDEA), a viable power quality solution, for wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 23, no. 2, pp. 642–650, 2008. DOI: 10.1109/TEC.2007.914181.
  • A. Gaillard, P. Poure and S. Saadate, “Reactive power compensation and active filtering capability of WECS with DFIG without any overrating,” Wind Energy, vol. 13, no. 7, pp. 603–614, 2009. DOI: 10.1002/we.381.
  • E. Tremblay, S. Atayde and A. Chandra, “Direct power control of a DFIG-based WECS with active filter capabilities,” in Proc. IEEE Elect. Power Energy Conf. (EPEC), Oct., pp. 22–23., 2009. pp. 1–6.
  • G. Todeschini and A. E. Emanuel, “Wind energy conversion system as an active filter: design and comparison of three control systems,” IET Renew. Power Gener., vol. 4, no. 4, pp. 341–353, 2010. DOI: 10.1049/iet-rpg.2009.0147.
  • C. Gao, et al., “Research on the influence of wind power access on voltage stability of distribution network,” J. Phys. Conf. Ser., vol. 2503, no. 1, pp. 012074, 2023. DOI: 10.1088/1742-6596/2503/1/012074.
  • M. M. Mahmoud, et al., “Integration of wind systems with SVC and STATCOM during various events to achieve FRT capability and voltage stability: towards the reliability of modern power systems,” Int. J. Energy Res., vol. 2023, pp. 1–28, 2023. DOI: 10.1155/2023/8738460.
  • N. R. Nkosi, R. C. Bansal, T. Adefarati, R. M. Naidoo and S. K. Bansal, “A review of small-signal stability analysis of DFIG-based wind power system,” Int. J. Modell. Simulat., vol. 43, no. 3, pp. 153–170, 2023. DOI: 10.1080/02286203.2022.2056951.
  • L. Zheng and S. Ma, “DC-bus voltage damping characteristic analysis and optimization of grid-connected PMSG,” Electr. Power Sys. Res., vol. 216, pp. 108980, 2023. DOI: 10.1016/j.epsr.2022.108980.
  • M. Sarwar, et al., “Stability enhancement of grid-connected wind power generation system using PSS, SFCL and STATCOM,” IEEE Access., vol. 11, pp. 30832–30844, 2023. DOI: 10.1109/ACCESS.2023.3262172.
  • Q. Wang, et al., “Synthetic load modelling considering the influence of distributed generation,” Energy Rep., vol. 9, pp. 662–669, 2023. DOI: 10.1016/j.egyr.2022.11.036.
  • T. Kealy, “The need for energy storage on renewable energy generator outputs to lessen the Geeth effect, ie short-term variations mainly associated with wind turbine active power output,” Energy Rep., vol. 9, pp. 1018–1028, 2023. DOI: 10.1016/j.egyr.2022.12.040.
  • C. Chen, Y. Su, T. Yang and Z. Huang, “Virtual inertia coordination control strategy of DFIG-based wind turbine for improved grid frequency response ability,” Electric Power Syst. Res., vol. 216, pp. 109076, 2023. DOI: 10.1016/j.epsr.2022.109076.
  • M. A. Hannan, et al., “Wind energy conversions, controls, and applications: a review for sustainable technologies and directions,” Sustain, vol. 15, no. 5, pp. 3986, 2023. DOI: 10.3390/su15053986.
  • M. M. Mahmoud, et al., “Evaluation and comparison of different methods for improving fault ride-through capability in grid-tied permanent magnet synchronous wind generators,” Int. Trans. Elect. Energy Syst., vol. 2023, pp. 1–22, 2023. DOI: 10.1155/2023/7717070.
  • R. Sadiq, Z. Wang and C. Y. Chung, “A multi-model multi-objective robust damping control of GCSC for hybrid power system with offshore/onshore wind farm,” Int. J. Electr. Power Energy Sys., vol. 147, pp. 108879, 2023. DOI: 10.1016/j.ijepes.2022.108879.
  • M. Abdelateef Mostafa, E. A. El-Hay and M. M. ELkholy, “Recent trends in wind energy conversion system with grid integration based on soft computing methods: comprehensive review, comparisons and insights,” Arch. Computat. Methods Eng., vol. 30, no. 3, pp. 1439–1478, 2023. DOI: 10.1007/s11831-022-09842-4.
  • S. S. Nc, S. S. Reddy and P. Sujatha, “Power quality issues on grid due to integration of renewable energy system: a review,” Power, vol. 52, no. 3, 2023.
  • O. Babayomi, Z. Zhang, T. Dragicevic, J. Hu and J. Rodriguez, “Smart grid evolution: predictive control of distributed energy resources—A review,” Int. J. Elect. Power & Energy Syst., vol. 147, pp. 108812, 2023. DOI: 10.1016/j.ijepes.2022.108812.
  • J. D. A. de Oliveira, F. K. de Araújo Lima, F. L. Tofoli and C. G. C. Branco, “Synchronverter-based frequency control technique applied in wind energy conversion systems based on the doubly-fed induction generator,” Electric Power Syst. Res., vol. 214, pp. 108820, 2023. DOI: 10.1016/j.epsr.2022.108820.
  • F. Guo, J. Yu, Q. Ni, Z. Zhang, J. Meng and Y. Wang, “Grid-forming control strategy for PMSG wind turbines connected to the low-frequency AC transmission system,” Energy Rep., vol. 9, pp. 1464–1472, 2023. DOI: 10.1016/j.egyr.2022.12.083.
  • M. A. Mostafa, E. A. El-Hay and M. M. Elkholy, “Optimal low voltage ride through of wind turbine doubly fed induction generator based on bonobo optimization algorithm,” Sci. Rep., vol. 13, no. 1, pp. 7778, 2023. DOI: 10.1038/s41598-023-34240-6.
  • Y. K. Wu, D. Y. Gau and T. D. Tung, “Overview of various voltage control technologies for wind turbines and AC/DC connection systems,” Energies, vol. 16, no. 10, pp. 4128, 2023. DOI: 10.3390/en16104128.
  • A. M. Soomar, L. Guanghua, S. Shaikh, S. H. H. Shah and P. Musznicki, “Scrutiny of power grids by penetrating PV energy in wind farms: a case study of the wind corridor of Jhampir, Pakistan,” Front. Energy Res., vol. 11, pp. 1164892, 2023. DOI: 10.3389/fenrg.2023.1164892.
  • R. K. Behara and A. K. Saha, “Neural network predictive control for improved reliability of grid-tied DFIG-based wind energy system under the three-phase fault condition,” Energies, vol. 16, no. 13, pp. 4881, 2023. DOI: 10.3390/en16134881.
  • L. Yin and W. Ding, “Multi-objective high-dimensional multi-fractional-order optimization algorithm for multi-objective high-dimensional multi-fractional-order optimization controller parameters of doubly-fed induction generator-based wind turbines,” Engineering Applicat. Artificial Intell., vol. 126, pp. 106929, 2023. DOI: 10.1016/j.engappai.2023.106929.
  • L. Van Dai, “A novel protection method to enhance the grid-connected capability of DFIG based on wind turbines,” IETE J. Res., pp. 1–17, 2023. DOI: 10.1080/03772063.2022.2163925.
  • D. Al Kez, A. Foley and F. Ahmed, 2023. Exploring Transient Voltage and Frequency Responses in Low Inertia Power Systems: a Comparative Study of Grid Following and Grid Forming Battery Energy Storage Systems. Available at SSRN 4512292.
  • N. Kushwaha and S. Kaur, “A review of the statcom device for improving wind farm stability,” J. Elect. Eng., vol. 16, no. 3, pp. 41–48, 2023.
  • S. D. Beigvand, H. Abdi and S. N. Singh, “Voltage stability analysis in radial smart distribution grids,” IET Generation Trans. & Dist., vol. 11, no. 15, pp. 3722–3730, 2017. DOI: 10.1049/iet-gtd.2016.1753.
  • R. Sakipour and H. Abdi, “Voltage stability improvement of wind farms by self-correcting static volt-ampere reactive compensator and energy storage,” Int. J. Electr. Power Energ. Sys., vol. 140, pp. 108082, 2022. DOI: 10.1016/j.ijepes.2022.108082.
  • R. Ahmed, M. A. Haque, K. Hossain and M. N. Uddin, “Development of a controlled output wind turbine,” Saudi J. Eng. Technol., vol. 7, no. 6, pp. 316–326, 2022. DOI: 10.36348/sjet.2022.v07i06.007.
  • T. Pidiiti and G. T. R. Das, “Power maximization and control of PMSG wind energy system without wind speed sensors,” Int. J. Control Theory Appl., vol. 10, no. 25, pp. 253–260, 2017.
  • C. Wei, Z. Zhang, W. Qiao and L. Qu, “An adaptive network-based reinforcement learning method for MPPT control of PMSG wind energy conversion systems,” IEEE Trans. Power Electron, vol. 31, no. 11, pp. 7837–7848, 2016. DOI: 10.1109/TPEL.2016.2514370.
  • S. Ghoshal, S. Banerjee and C. K. Chanda, “Modeling and performance evaluation of MPPT-based PMSG wind energy conversion system with boost converter in MATLAB/simulink environment,” in Sustainable Energy and Technological Advancements, Singapore, Springer, pp. 15–28, 2022.
  • R. A. Ibrahim and N. E. Zakzouk, “A PMSG wind energy system featuring low-voltage ride-through via mode-shift control,” Appl. Sci., vol. 12, no. 3, pp. 964, 2022. DOI: 10.3390/app12030964.
  • D. Somayajula and M. L. Crow, “An ultracapacitor integrated power conditioner for intermittency smoothing and improving power quality of distribution grid,” IEEE Trans. Sustain. Energy, vol. 5, no. 4, pp. 1145–1155, 2014. DOI: 10.1109/TSTE.2014.2334622.
  • M. Z. Sujod, I. Erlich and S. Engel Hardt, “Improving the reactive power capability of the DFIG-based wind turbine during operation around the synchronous speed,” IEEE Trans. Energy Convers, vol. 28, no. 3, pp. 736–745, 2013. DOI: 10.1109/TEC.2013.2272975.
  • N. S. Naidu and B. Singh, “Grid-interfaced DFIG-based variable speed wind energy conversion system with power smoothening,” IEEE Trans. Sustain. Energy, vol. 8, no. 1, pp. 51–58, 2016. DOI: 10.1109/TSTE.2016.2582520.
  • S. Puchalapalli, B. Singh, S. K. Tiwari and P. K. Goel, “Design and analysis of grid-interactive DFIG based WECS for regulated power flow,” IEEE Trans. Ind. Appl., vol. 56, no. 5, pp. 5396–5407, 2020. DOI: 10.1109/TIA.2020.3011059.
  • A. Rajaram and K. Sathiyaraj, “An improved optimization technique for energy harvesting system with grid connected power for green house management,” J. Electr. Eng. Technol., vol. 17, no. 5, pp. 2937–2949, 2022. DOI: 10.1007/s42835-022-01033-2.
  • K. Sathiyaraj and A. Rajaram, An optimized design modelling of neural network based green house management system using solar and rectenna. DOI: 10.1007/s42835-022-01033-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.