76
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Robust Lyapunov-Based Power Controllers with Integral Action for a Wind Farm

, , , , , & show all
Received 08 Nov 2023, Accepted 23 Jan 2024, Published online: 19 Feb 2024

References

  • H. Benbouhenni, H. Hamza, M. Oproescu, et al., “Application of fractional-order synergetic-proportional integral controller based on PSO algorithm to improve the output power of the wind turbine power system,” Sci. Rep., vol. 14, no. 1, pp. 609, 2024. DOI: 10.1038/s41598-024-51156-x.
  • N. Debdouche, L. Zarour, A. Chebabhi, N. Bessous, H. Benbouhenni and I. Colak, “Genetic algorithm-super-twisting technique for grid-connected PV system associate with filter,” Energy Rep., vol. 10, pp. 4231–4252, 2023. DOI: 10.1016/j.egyr.2023.10.074.
  • N. Debdouche, B. Deffaf, H. Benbouhenni, Z. Laid and M. I. Mosaad, “Direct power control for three-level multifunctional voltage source inverter of PV systems using a simplified super-twisting algorithm,” Energies, vol. 16, no. 10, pp. 4103, 2023. DOI: 10.3390/en16104103.
  • K. Walid, M. Sofiane, B. Habib, G. Hamza and T. Es-Saadi, “Application of third-order sliding mode controller to improve the maximum power point for the photovoltaic system,” Energy Reports, vol. 9, pp. 5372–5383, Dec. 2023. DOI: 10.1016/j.egyr.2023.04.366.
  • B. Deffaf, N. Debdouche, H. Benbouhenni, F. Hamoudi and N. Bizon, “A new control for improving the power quality generated by a three-level T-type inverter,” Electronics, vol. 12, no. 9, pp. 2117, 2023. DOI: 10.3390/electronics12092117.
  • H. Benbouhenni and N. Bizon, “Advanced direct vector control method for optimizing the operation of a double-powered induction generator-based dual-rotor wind turbine system,” Mathematics, vol. 9, no. 19, pp. 2403, 2021. DOI: 10.3390/math9192403.
  • B. Habib, “Intelligent super twisting high order sliding mode controller of dual-rotor wind power systems with direct attack based on doubly-fed induction generators,” J. Electr. Eng. Electr. Control Comput. Sci., vol. 7, no. 4, pp. 1–8, 2021.
  • B. Habib and B. Nicu, “A new direct power control method of the DFIG-DRWT system using neural PI controllers and four-level neural modified SVM technique,” J. Appl. Res. Technol., vol. 21, no. 1, pp. 36–55, 2023.
  • H. Chojaa, et al., “A novel DPC approach for DFIG-based variable speed wind power systems using DSpace,” IEEE Access, vol. 11, pp. 9493–9510, 2023. DOI: 10.1109/ACCESS.2023.3237511.
  • B. Habib and H. Gasmi, “Comparative study of synergetic controller with super twisting algorithm for rotor side inverter of DFIG,” Int. J. Smart Grid-ijSmartGrid, vol. 6, no. 4, pp. 144–156, 2022. DOI: 10.20508/ijsmartgrid.v6i4.265.g228.
  • B. Habib, “Amelioration effectiveness of torque and rotor flux control applied to the asynchronous generator (AG) for dual-rotor wind turbine using neural third-order sliding mode approaches,” Int. J. Eng. Trans. C: Asp., vol. 35, no. 03, pp. 517–530, 2022.
  • B. Habib, I. Colak and N. Bizon, “Application of genetic algorithm and terminal sliding surface to improve the effectiveness of the proportional–integral controller for the direct power control of the induction generator power system,” Eng. Appl. Artif. Intell., vol. 125, pp. 106681, 2023. DOI: 10.1016/j.engappai.2023.106681.
  • B. Habib, H. Gasmi and I. Colak, “Intelligent control scheme of asynchronous generator-based dual-rotor wind power system under different working conditions,” Majlesi J. Energy Manage., vol. 11, no. 3, pp. 8–15, 2022. https://em.majlesi.info/index.php/em/article/view/494.
  • H. Benbouhenni, H. Gasmi, I. Colak, N. Bizon and P. Thounthong, “Synergetic-PI controller based on genetic algorithm for DPC-PWM strategy of a multi-rotor wind power system,” Sci. Rep., vol. 13, no. 1, pp. 13570, 2023. DOI: 10.1038/s41598-023-40870-7.
  • H. Benbouhenni, N. Bizon, P. Thounthong, I. Colak and P. Mungporn, “A new integral-synergetic controller for direct reactive and active powers control of a dual-rotor wind system,” Meas. Control, vol. 57, no. 2, pp. 208–224, 2023. DOI: 10.1177/00202940231195117.
  • B. Habib, B. Nicu, M. I. Mosaad, I. Colak, A. Belhadj Djilali and H. Gasmi, “Enhancement of the power quality of DFIG-based dual-rotor wind turbine systems using fractional order fuzzy controller,” Expert Syst. Appl., vol. 238, no. Part A, pp. 121695, 2024. DOI: 10.1016/j.eswa.2023.121695.
  • H. Benbouhenni, C. Ilhami, B. Nicu and E. Abdelkarim, “Fractional-order neural control of a DFIG supplied by a two-level PWM inverter for dual-rotor wind turbine system,” Meas. Control, pp. 1–18, 2023. DOI: 10.1177/00202940231201375.
  • B. Habib, D. Zellouma, N. Bizon and I. Colak, “A new PI(1 +PI) controller to mitigate power ripples of a variable-speed dual-rotor wind power system using direct power control,” Energy Rep., vol. 10, pp. 3580–3598, 2023. DOI: 10.1016/j.egyr.2023.10.007.
  • H. Benbouhenni, et al., “Fractional-order synergetic control of the asynchronous generator-based variable-speed multi-rotor wind power systems,” IEEE Access, vol. 11, pp. 133490–133508, 2023. DOI: 10.1109/ACCESS.2023.3335902.
  • D. F. Howard, J. Liang and R. G. Harley, “Short-circuit modeling of DFIGs with uninterrupted control,” IEEE J. Emerg. Sel. Top. Power Electr., vol. 2, no. 1, pp. 47–57, 2014. DOI: 10.1109/JESTPE.2013.2293623.
  • M. Liu, W. Pan, R. Quan, H. Li, T. Liu and G. Yang, “A short-circuit calculation method for DFIG-based wind farms,” IEEE Access, vol. 6, pp. 52793–52800, 2018. DOI: 10.1109/ACCESS.2018.2867624.
  • S. Muller, M. Deicke and R. W. De Doncker, “Doubly fed induction generator systems for wind turbines,” IEEE Ind. Appl. Mag., vol. 8, no. 3, pp. 26–33, 2002. DOI: 10.1109/2943.999610.
  • J. Bhukya and V. Mahajan, “The controlling of the DFIG based on variable speed wind turbine modeling and simulation,” IEEE 6th International Conference on Power Systems (ICPS), 2016. pp. 1–6, New Delhi, India.
  • Y. Djeriri, “Lyapunov-based robust power controllers for a doubly fed induction generator,” Iran. J. Electr. Electron. Engi., vol. 16, no. 4, pp. 551–558, 2020.
  • M. A. Chowdhury, W. X. Shen, N. Hosseinzadeh and H. R. Pota, “A novel aggregated DFIG wind farm model using mechanical torque compensating factor,” Energy Convers. Manage., vol. 67, pp. 265–274, 2013. DOI: 10.1016/j.enconman.2012.12.001.
  • C. Evangelista, F. Valenciaga and P. Puleston, “Active and reactive power control for wind turbine based on a MIMO 2-sliding mode algorithm with variable gains,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 682–689, Sept. 2013. DOI: 10.1109/TEC.2013.2272244.
  • P. Cartwright, L. Holdsworth, J. B. Ekanayake and N. Jenkins, “Co-ordinated voltage control strategy for a doubly-fed induction generator (DFIG)-based wind farm,” IEE Proc. Gener. Transm. Distrib., vol. 151, no. 4, pp. 495–502, 2004. Jul DOI: 10.1049/ip-gtd:20040581.
  • P. Moutis, “Discussion on primary frequency regulation by deloaded wind turbines using variable droop,” IEEE Trans. Power Syst., vol. 29, no. 1, pp. 414–414, Jan. 2014. DOI: 10.1109/TPWRS.2013.2290820.
  • M. Wang-Hansen, R. Josefsson and H. Mehmedovic, “Frequency controlling wind power modeling of control strategies,” IEEE Trans. Sustain. Energy, vol. 4, no. 4, pp. 954–959, Oct. 2013. DOI: 10.1109/TSTE.2013.2257898.
  • D. Campos-Gaona, E. L. Moreno-Goytia and O. Anaya-Lara, “Fault ride-through improvement of DFIG-WT by integrating a two-degrees-of-freedom internal model control,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1133–1145, Mar. 2013. DOI: 10.1109/TIE.2012.2216234.
  • J. Mohammadi, S. Afsharnia and S. Vaez-Zadeh, “Efficient fault-ride-through control strategy of DFIG-based wind turbines during the grid faults,” Energy Convers. Manage., vol. 78, pp. 88–95, Feb. 2014. DOI: 10.1016/j.enconman.2013.10.029.
  • K. Vinothkumar and M. P. Selvan, “Novel scheme for enhancement of fault ride-through capability of doubly fed induction generator based wind farms,” Energy Convers. Manage., vol. 52, no. 7, pp. 2651–2658, Jul. 2011. DOI: 10.1016/j.enconman.2011.01.003.
  • F. Akel, T. Ghennam, E. M. Berkouk and M. Laour, “An improved sensorless decoupled power control scheme of grid connected variable speed wind turbine generator,” Energy Convers. Manage., vol. 78, pp. 584–594, Feb. 2014. DOI: 10.1016/j.enconman.2013.11.015.
  • L. Belhadji, S. Bacha, I. Munteanu, A. Rumeau and D. Roye, “Adaptive MPPT applied to variable-speed microhydropower plant,” IEEE Trans. Energy Convers., vol. 28, no. 1, pp. 34–43, Mar. 2013. DOI: 10.1109/TEC.2012.2220776.
  • T. Ghennam, K. Aliouane, F. Akel, B. Francois and E. M. Berkouk, “Advanced control system of DFIG based wind generators for reactive power production and integration in a wind farm dispatching,” Energy Convers. Manage., vol. 105, pp. 240–250, Nov. 2015. DOI: 10.1016/j.enconman.2015.07.058.
  • I. M. de Alegría, J. Andreu, J. L. Martín, P. Ibañez, J. L. Villate and H. Camblong, “Connection requirements for wind farms: a survey on technical requierements and regulation,” Renew. Sustain. Energy Rev., vol. 11, no. 8, pp. 1858–1872, Oct. 2007. DOI: 10.1016/j.rser.2006.01.008.
  • J. L. Rodríguez-Amenedo, S. Arnaltes and M. A. Rodríguez, “Operation and coordinated control of fixed and variable speed wind farms,” Renewable Energy, vol. 33, no. 3, pp. 406–414, Mar. 2008. DOI: 10.1016/j.renene.2007.03.003.
  • X. She, A. Q. Huang, F. Wang and R. Burgos, “Wind energy system with integrated functions of active power transfer, reactive power compensation, and voltage conversion,” IEEE Trans. Ind. Electron, vol. 60, no. 10, pp. 4512–4524, Oct. 2013. DOI: 10.1109/TIE.2012.2216245.
  • S. Chikha, “Active and reactive power management of wind farm based on a six leg tow stage matrix converter controlled by a predictive direct power controller,” Iran. J. Electr. Electron. Eng., vol. 14, no. 3, pp. 245–258, 2018. Sep
  • H. Gasmi, M. Sofiane, H. Benbouhenni and N. Bizon, “Optimal operation of doubly-fed induction generator used in a grid-connected wind power system,” Iran. J. Electr. Electron. Eng., vol. 19, no. 2, pp. 2431–2431, 2023. DOI: 10.22068/IJEEE.19.2.2431.
  • S. Kadi, K. Imarazene, B. El Madjid, H. Benbouhenni and E. Abdelkarim, “A direct vector control based on modified SMC theory to control the double-powered induction generator-based variable-speed contra-rotating wind turbine systems,” Energy Rep., vol. 8, pp. 15057–15066, 2022. DOI: 10.1016/j.egyr.2022.11.052.
  • B. Habib, Z. Boudjema and A. Belaidi, “A comparative study between four-level NSVM and three-level NSVM technique for a DFIG-based WECSs controlled by indirect vector control,” Carpathian J. Electron. Comput. Eng., vol. 11, no. 2, pp. 13–19, 2018. DOI: 10.2478/cjece-2018-0012.
  • H. Benbouhenni, “Application of seven-level neural space vector PWM in direct vector control system of doubly fed induction generator for wind turbine,” Int. J. Smart Grid, vol. 3, no. 3, pp. 163–171, 2019.
  • H. Benbouhenni, “Intelligence indirect vector control of a DFIG based wind turbines,” Majlesi J. Electr. Eng., vol. 13, no. 3, pp. 27–35, 2019.
  • B. Habib and N. Bizon, “Third-order sliding mode applied to the direct field-oriented control of the asynchronous generator for variable-speed contra-rotating wind turbine generation systems,” Energies, vol. 14, no. 18, pp. 5877, 2021. DOI: 10.3390/en14185877.
  • H. Gasmi, S. Mendaci, S. Laifa, W. Kantas and H. Benbouhenni, “Fractional-order proportional-integral super twisting sliding mode controller for wind energy conversion system equipped with doubly fed induction generator,” J. Power Electron., vol. 22, no. 8, pp. 1357–1373, 2022. DOI: 10.1007/s43236-022-00430-0.
  • B. Habib, “A comparative study between DTC-NSTMC and DTC-FSTSMC control scheme for a DFIG-based wind turbine,” Majlesi J. Energy Manage., vol. 7, no. 4, pp. 1–9. 2018.
  • B. Habib, Z. Boudjema and A. Belaidi, “Sensorless twelve sectors implementation of neural DPC controlled DFIG for reactive and active powers ripples reduction,” Majlesi J. Energy Manage., vol. 7, no. 2, pp. 13–21, 2018.
  • B. Habib, “Rotor flux and torque ripples minimization for direct torque control of DFIG by NSTSM algorithm,” Majlesi J. Energy Manage., vol. 7, no. 3, pp. 1–9, 2018.
  • B. Habib, Z. Boudjema and A. Belaidi, Laboratoire d’Automatique et d’Analyse des Systèmes (LAAS), Departement de Génie Électrique, Ecole Nationale Polytechnique d’Oran Maurice Audin, Oran, Algeria., “Power ripple reduction of DPC DFIG drive using ANN controller,” AEI, vol. 20, no. 1, pp. 15–22, 2020. DOI: 10.15546/aeei-2020-0003.
  • B. Habib, “A direct power control of the doubly fed induction generator based on the three-level NSVPWM technique,” Int. J. Smart Grid, vol. 3, no. 4, pp. 216–225, 2019.
  • L. Shang and J. Hu, “Sliding-mode-based direct power control of grid-connected wind-turbine-driven doubly fed induction generators under unbalanced grid voltage conditions,” IEEE Trans. Energy Convers., vol. 27, no. 2, pp. 362–373, Jun. 2012. DOI: 10.1109/TEC.2011.2180389.
  • H. Benbouhenni, “Synergetic control theory scheme for asynchronous generator based dual-rotor wind power,” J. Electr. Eng. Electron. Control Comput. Sci., vol. 7, pp. 4, 2021.
  • B. Habib, Z. Boudjema and A. Belaidi, “Comparison study between neural STSM and ANFIS-STSM method in DPC control scheme of DFIG-based dual-rotor wind turbines,” Int. J. Mathe. Comput. Simul., vol. 14, pp. 73–86, 2020.
  • B. Habib, “Twelve sectors DPC control based on neural hysteresis comparators of the DFIG integrated to wind power,” Tec. Ital.-Ital. J. Eng. Sci., vol. 64, no. 2, pp. 223–236, 2020.
  • H. Benbouhenni and S. Lemdani, “Combining synergetic control and super twisting algorithm to reduce the active power undulations of doubly fed induction generator for dual-rotor wind turbine system,” Electr. Eng. Electromech., vol. 2021, no. 3, pp. 8–17, 2021. DOI: 10.20998/2074-272X.2021.3.02.
  • B. Habib, Z. Boudjema, N. Bizon, P. Thounthong and N. Takorabet, “Direct power control based on modified sliding mode controller for a variable-speed multi-rotor wind turbine system using PWM strategy,” Energies, vol. 15, no. 10, pp. 3689, 2022. DOI: 10.3390/en15103689.
  • B. Habib, “Direct active and reactive powers command with third-order sliding mode theory for DFIG-based dual-rotor wind power systems,” Int. J. Nat. Eng. Sci., vol. 15, no. 1, pp. 17–34, 2021.
  • B. Habib, F. Mehedi and L. Soufiane, “New direct power synergetic-SMC technique based PWM for DFIG integrated to a variable speed dual-rotor wind power,” Automatika, vol. 63, no. 4, pp. 718–731, 2022. DOI: 10.1080/00051144.2022.2065801.
  • B. Habib, N. Bizon, I. Colak, P. Thounthong and N. Takorabet, “Application of fractional-order PI controllers and neuro-fuzzy PWM technique to multi-rotor wind turbine systems,” Electronics, vol. 11, no. 9, pp. 1340, 2022. DOI: 10.3390/electronics11091340.
  • M. Yessef, et al., “Experimental validation of feedback PI controllers for multi-rotor wind energy conversion systems,” IEEE Access, vol. 12, pp. 7071–7088, 2024. DOI: 10.1109/ACCESS.2024.3351355.
  • P. Xiong and D. Sun, “Backstepping-based DPC strategy of a wind turbine-driven DFIG under normal and harmonic grid voltage,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4216–4225, Jun. 2016. DOI: 10.1109/TPEL.2015.2477442.
  • H. Benbouhenni, H. Gasmi and I. Colak, “Backstepping control for multi-rotor wind power systems,” Majlesi J. Energy Manage., vol. 11, no. 4, pp. 8–15, 2022. https://em.majlesi.info/index.php/em/article/view/493.
  • H. Chojaa, et al., “Enhancement of direct power control by using artificial neural network for a doubly fed induction generator-based WECS: an experimental validation,” Electronics, vol. 11, no. 24, pp. 4106, 2022. DOI: 10.3390/electronics11244106.
  • H. Xu, Q. Zhu and W. X. Zheng, “Exponential stability of stochastic nonlinear delay systems subject to multiple periodic impulses,” IEEE Trans. Automat. Contr., pp. 1–8, 2023. DOI: 10.1109/TAC.2023.3335005.
  • W. Hu, Q. Zhu and H. R. Karimi, “Some improved razumikhin stability criteria for impulsive stochastic delay differential systems,” IEEE Trans. Automat. Contr., vol. 64, no. 12, pp. 5207–5213, Dec. 2019. DOI: 10.1109/TAC.2019.2911182.
  • W. Hu and Q. Zhu, “Stability criteria for impulsive stochastic functional differential systems with distributed-delay dependent impulsive effects,” IEEE Trans. Syst. Man Cybern, Syst., vol. 51, no. 3, pp. 1–6, Mar. 2019. DOI: 10.1109/TSMC.2019.2905007.
  • H. Peng and Q. Zhu, “Fixed time stability of impulsive stochastic nonlinear time-varying systems,” Int. J. Robust Nonlinear, vol. 33, no. 6, pp. 3699–3714, 2023. DOI: 10.1002/rnc.6589.
  • H. Xu and Q. Zhu, “New criteria on pth moment exponential stability of stochastic delayed differential systems subject to average-delay impulses,” Syst. Control Lett., vol. 164, no. 6, pp. 105234, 2022. DOI: 10.1016/j.sysconle.2022.105234.
  • D. Zellouma, H. Benbouhenni and Y. Bekakra, “Backstepping control based on a third-order sliding mode controller to regulate the torque and flux of asynchronous motor drive,” Period. Polytech. Electr. Eng. Comput. Sci., vol. 67, no. 1, pp. 10–20, 2023. DOI: 10.3311/PPee.20333.
  • D. Zellouma, Y. Bekakra and H. Benbouhenni, “Robust synergetic-sliding mode-based-backstepping control of induction motor with MRAS technique,” Energy Rep., vol. 10, pp. 3665–3680, Nov. 2023. DOI: 10.1016/j.egyr.2023.10.035.
  • N. Debdouche, L. Zarour, H. Benbouhenni, F. Mehazzem and B. Deffaf, “Robust integral backstepping control microgrid connected photovoltaic system with battery energy storage through multi-functional voltage source inverter using direct power control SVM strategies,” Energy Rep., vol. 10, pp. 565–580, 2023. DOI: 10.1016/j.egyr.2023.07.012.
  • E. Chetouani, Y. Errami, A. Obbadi, S. Sahnoun and B. Wadawa, “Nonlinear backstepping with integral action for wind power plant based on doubly fed induction generator connected to the non-ideal grid,” Technol. Econ. Smart Grids Sustain. Energy, vol. 7, no. 1, pp. 1–15, Feb. 2022. DOI: 10.1007/s40866-022-00130-5.
  • D. Jiang, P. Ning, R. Lai, Z. Fang and F. Wang, “Modular design method for motor drives,” Chin. J. Electr. Eng., vol. 4, no. 1, pp. 1–10, Mar. 2018.
  • G. Dyanamina and S. K. Kakodia, “Adaptive neuro fuzzy inference system based decoupled control for neutral point clamped multi level inverter fed induction motor drive,” Chin. J. Electr. Eng., vol. 7, no. 2, pp. 70–82, Jun. 2021. DOI: 10.23919/CJEE.2021.000017.
  • H. Abu-Rub, J. Holtz, J. Rodriguez and G. Baoming, “Medium-voltage multilevel converters—state of the art, challenges, and requirements in industrial applications,” IEEE Trans. Ind. Electron., vol. 57, No. 8, pp. 2581–2596, Aug. 2010. DOI: 10.1109/TIE.2010.2043039.
  • A. Tripathi and G. Narayanan, “Torque ripple minimization in neutral-point-clamped three-level inverter fed induction motor drives operated at low-switching-frequency,” IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2370–2380, May–Jun. 2018. DOI: 10.1109/TIA.2018.2804325.
  • S. Zhang, L. Wu, C. Liu, L. Tan and Q. Ge, “Three-level NPC back-to-back converter with IGCT for high power AC drive,” International Conference on Electrical Machines and Systems, 2011. pp. 1 – 4, Beijing, China .
  • R. U. A. Shaikh and H. Shaikh, “Analysis of field oriented controlled AC drive fed by a back-to-back three level NPC converter,” First International Conference on Latest Trends in Electrical Engineering and Computing Technologies (INTELLECT), 2017. pp. 1-8, Karachi, Pakistan .
  • H. Benbouhenni, “Application of five-level NPC inverter in DPC-ANN of doubly fed induction generator for wind power generation systems,” Int. J. Smart Grid, vol. 3, no. 3, pp. 128–137, 2019.
  • M. Atallah, A. Mezouar, K. Belgacem, M. A. Benmahdjoub, Y. Saidi and B. Brahmi, “Power control and management of DFIGs wind farm equipped with aggregation methods by using local supervision unit based on S-function builder,” J. Control Autom. Electr. Syst., vol. 33, no. 3, pp. 912–928, 2022. Jan DOI: 10.1007/s40313-021-00855-1.
  • H. H. Lee, P. Q. Dzung, L. M. Phuong, L. D. Khoa and N. H. Nhan, “A new fuzzy logic approach for control system of wind turbine with Doubly Fed Induction Generator,” International Forum on Strategic Technology, 2010. pp. 134-139, Ulsan, Korea (South) .
  • A. Almakki, A. Mazalov, H. Benbouhenni and N. Bizon, “Comparison of two fractional-order high-order SMC techniques for the DFIG-based wind turbine: theory and simulation results,” ECTI-EEC, vol. 21, no. 2, pp. 249817, 2023. DOI: 10.37936/ecti-eec.2023212.249817.
  • B. Hopfensperger, D. J. Atkinson and R. A. Lakin, “Stator-flux-oriented control of a doubly-fed induction machine: with and without position encoder,” IEE Proc., Electr. Power Appl., vol. 147, no. 4, pp. 241–250, Jul2000. DOI: 10.1049/ip-epa:20000442.
  • G. Tapia, A. Tapia and J. X. Ostolaza, “Proportional–integral regulator-based approach to wind farm reactive power management for secondary voltage control,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 488–498, Jun. 2007. DOI: 10.1109/TEC.2005.858058.
  • R. C. Portillo, et al., “Modeling strategy for back-to-back three-level converters applied to high-power wind turbines,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1483–1491, Oct. 2006. DOI: 10.1109/TIE.2006.882025.
  • T. A. Meynard, M. Fadel and N. Aouda, “Modeling of multilevel converters,” IEEE Trans. Ind. Electron., vol. 44, no. 3, pp. 356–364, Jun. 1997. DOI: 10.1109/41.585833.
  • Y. Djeriri, A. Meroufel, B. Belabbes and A. Massoum, “Three-level NPC voltage source converter based direct power control of the doubly fed induction generator at low constant switching frequency,” J. Ren. Energies, vol. 16, no. 1, pp. 91–103, Mar. 2023. DOI: 10.54966/jreen.v16i1.366.
  • D. A. Khaburi and A. Nazempour, “Design and simulation of a PWM rectifier connected to a PM generator of micro turbine unit,” Sci. Iran., vol. 19, no. 3, pp. 820–828, 2012. Jun DOI: 10.1016/j.scient.2011.09.017.
  • R. Abdelli, D. Rekioua, T. Rekioua and A. Tounzi, “Improved direct torque control of an induction generator used in a wind conversion system connected to the grid,” ISA Trans., vol. 52, no. 4, pp. 525–538, Jul. 2013. DOI: 10.1016/j.isatra.2013.03.001.
  • M. Doumi, A. Aissaoui, A. Tahour, M. Abid and K. Tahir, “Nonlinear integral backstepping control of wind energy conversion system based on a double-fed induction generator,” Electrotech. Rev., vol. 1, no. 3, pp. 132–137, Mar. 2016. DOI: 10.15199/48.2016.03.32.
  • M. Loucif, A. Boumediene and A. Mechernene, “Backstepping control of double fed induction generator driven by wind turbine,” 3rd International Conference on Systems and Control, 2013. pp. 153-158, Algiers, Algeria .
  • M. Nadour, A. Essadki, M. Fdaili and T. Nasser, “Inertial response using backstepping control from DFIG based wind power plant for short-term frequency regulation,” 6th International Conference on Control, Decision and Information Technologies (CoDIT), 2019. pp. 268 – 273, Paris, France,
  • Y. Ihedrane, C. E. Bekkali, M. E. Ghamrasni, S. Mensou and B. Bossoufi, “Improved wind system using non-linear power control,” IJEECS, vol. 14, no. 3, pp. 1148–1158, June. 2019. DOI: 10.11591/ijeecs.v14.i3.pp1148-1158.
  • A. Khedher, N. Khemiri and M. F. Mimouni, “Wind energy conversion system using DFIG controlled by backstepping and sliding mode strategies,” Int. J. Renew. Energy Res., vol. 2, no. 3, pp. 421–430, 2012.
  • S. Mensou, A. Essadki, T. Nasser and B. B. Idrissi, “An efficient nonlinear backstepping controller approach of a wind energy conversion system based on a DFIG,” Int. J. Renew. Energy Res. (IJRER), vol. 7, no. 4, pp. 1520–1528, 2017.
  • M. A. Hamida, A. Glumineau and J. D. Leon, “Robust integral backstepping control for sensorless IPM synchronous motor controller,” J. Franklin Inst., vol. 349, no. 5, pp. 1734–1757, 2012. Jun DOI: 10.1016/j.jfranklin.2012.02.005.
  • M. Yahiaoui, B. Afif, B. Brahmi, M. Horch and M. Serraoui, “Maximum power point tracking controller using Lyapunov theorem of wind turbine under varying wind conditions,” IJECE, vol. 13, no. 2, pp. 1281–1290, Apr. 2023. DOI: 10.11591/ijece.v13i2.pp1281-1290.
  • R. Chakib, A. Essadki and M. Cherkaoui, “Active disturbance rejection control for wind system based on a DFIG,” Int. J. Electr. Comput. Energetic Electron. Commun. Eng., vol. 8, no. 8, pp. 1306–1315, 2014.
  • F. M. Hughes, O. Anaya-Lara, N. Jenkins and G. Strbac, “Control of DFIG-based wind generation for power network support,” IEEE Trans. Power Syst., vol. 20, no. 4, pp. 1958–1966, Nov. 2005. DOI: 10.1109/TPWRS.2005.857275.
  • A. Beugniez, T. Ghennam, B. Francois, E. M. Berkouk and B. Robyns, “Centralized supervision of reactive power generation for a wind farm,” European Conference on Power Electronics and Applications, 2007. pp. 1-10, Aalborg, Denmark .
  • A. Tapia, G. Tapia and J. X. Ostolaza, “Reactive power control of wind farms for voltage control applications,” Renewable Energy, vol. 29, no. 3, pp. 377–392, Mar. 2004. DOI: 10.1016/S0960-1481(03)00224-6.
  • O. Bouhali, B. Francois, E. M. Berkouk and C. Saudemont, “Power sizing and control of a three-level NPC converter for grid connection of wind generators,” Electromotion, vol. 16, no. 1, pp. 38–49, 2009.
  • M. Chinchilla, S. Arnalte, J. C. Burgos and J. L. Rodríguez, “Power limits of grid-connected modern wind energy systems,” Renewable Energy, vol. 31, no. 9, pp. 1455–1470, Jul. 2006. DOI: 10.1016/j.renene.2004.03.021.
  • T. Lund, P. Sørensen and J. Eek, “Reactive power capability of a wind turbine with doubly fed induction generator,” Wind Energy: Int. J. Prog. Appl. Wind Power Convers. Technol., vol. 10, no. 4, pp. 379–394, Jul. 2007. DOI: 10.1002/we.228.
  • D. Santos-Martin, S. Arnaltes and J. L. R. Amenedo, “Reactive power capability of doubly fed asynchronous generators,” Electric Power Syst. Res., vol. 78, no. 11, pp. 1837–1840, Nov. 2008. DOI: 10.1016/j.epsr.2008.02.007.
  • L. M. Fernández, C. A. García, J. R. Saenz and F. Jurado, “Equivalent models of wind farms by using aggregated wind turbines and equivalent winds,” Energy Convers. Manage., vol. 50, no. 3, pp. 691–704, Mar. 2009. Mar DOI: 10.1016/j.enconman.2008.10.005.
  • F. Echiheb, et al., “Robust sliding-backstepping mode control of a wind system based on the DFIG generator,” Sci. Rep., vol. 12, no. 1, pp. 11782, 2022. DOI: 10.1038/s41598-022-15960-7.
  • Y. Djeriri, A. Meroufel, A. Massoum and Z. Boudjema, “A comparative study between field oriented control strategy and direct power control strategy for DFIG,” J. Electr. Eng., vol. 14, no. 2, pp. 9–9, 2014.
  • A. D. Hansen and G. Michalke, “Fault ride-through capability of DFIG wind turbines,” Renewable Energy, vol. 32, no. 9, pp. 1594–1610, 2007. DOI: 10.1016/j.renene.2006.10.008.
  • X. Yang, G. Liu, V. D. Le andC and Q. Le, “A novel model-predictive direct control for induction motor drives,” IEEJ Trans. Electr. Eng., vol. 14, no. 11, pp. 1691–1702, 2019. DOI: 10.1002/tee.22992.
  • P. Kou, D. Liang, J. Li, L. Gao and Q. Ze, “Finite-control-set model predictive control for DFIG wind turbines,” IEEE Trans. Automat. Sci. Eng., vol. 15, no. 3, pp. 1004–1013, 2018. DOI: 10.1109/TASE.2017.2682559.
  • M. Bouderbala, B. Bossoufi, H. A. Aroussi, M. Taoussi and A. Lagrioui, “Novel deadbeat predictive control strategy for DFIG’s back to back power converter,” Int. J. Power Electron. Drive Syst., vol. 13, pp. 2731–2741, 2022.
  • H. E. Alami, et al., “Robust finite control-set model predictive control for power quality enhancement of a wind system based on the DFIG generator,” Energies, vol. 16, no. 3, pp. 1422, 2023. DOI: 10.3390/en16031422.
  • I. M. B. Hassine, M. W. Naouar and N. Mrabet-Bellaaj, “Predictive control strategies for wind turbine system based on permanent magnet synchronous generator,” ISA Trans, vol. 62, pp. 73–80, 2016. DOI: 10.1016/j.isatra.2015.12.002.
  • A. Achar, Y. Djeriri, A. Bentaallah, S. Hanafi, M. A. Djehaf and R. Bouddou, “Lyapunov-based robust power controllers for a wind farm using parallel multicell converters,” Prz. Elektrotech., vol. 99, no. 4, pp. 247–254, 2023. DOI: 10.15199/48.2023.04.43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.