104
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Modeling, Analysis, and Winding Loss Calculation of Different Litz and Solid Wire on Coupled Inductor in DC–DC Cuk Converter for DCM

&
Pages 1854-1869 | Received 15 Jul 2023, Accepted 04 Feb 2024, Published online: 25 Feb 2024

References

  • C. R. Sullivan, “Optimal choice for several strands in a litz-wire transformer winding,” IEEE Trans. Power Electron., vol. 14, no. 2, pp. 283–291, Mar. 1999. DOI: 10.1109/63.750181.
  • C. R. Sullivan, “Cost-constrained selection of strand diameter and number in a litz-wire transformer winding,” IEEE Trans. Power Electron., vol. 16, no. 2, pp. 281–288, Mar. 2001. DOI: 10.1109/63.911153.
  • H. Rossmanith, M. Doebroenti, M. Albach, and D. Exner, “Measurement and characterization of high-frequency losses in nonideal litz wire,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3386–3394, Nov. 2011. DOI: 10.1109/TPEL.2011.2143729.
  • A. Rosskopf, E. Bar, and C. Joffe, “Influence on inner skin and proximity effects on conduction in litz wires,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5454–5461, Oct. 2014. DOI: 10.1109/TPEL.2013.2293847.
  • A. Stadler, R. Huber, T. Stolzke, and C. Joffe, “Analytical calculation of copper losses in litz wire windings of a gapped inductor,” IEEE Trans. Magn., vol. 50, no. 2, pp. 7001804, Feb. 2014. DOI: 10.1109/TMAG.2013.2282333.
  • E. L. Barrios, A. Ursua, L. Marroyo, and P. Sanchis, “Analytical design methodology for litz-wired high-frequency power transformers,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2103–2113, Apr. 2015. DOI: 10.1109/TIE.2014.2351786.
  • V. Sung and W. G. Odendaal, “Litz wire pulsed power air gap coupled inductor,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3385–3393, Jul./Aug. 2015. DOI: 10.1109/TIA.2015.2413373.
  • M. A. Eit, F. Bouillaut, C. Marchand, and G. Krabs, “2-D reduced model for eddy currents calculation in litz wire and its application for switched reluctance machine,” IEEE Trans. Magn., vol. 52, no. 3, pp. 1–4, Mar. 2016. DOI: 10.1109/TMAG.2015.2486838.
  • A. Roskopf, E. Bar, C. Joffe, and C. Bonse, “Calculation of power losses in litz wire systems by coupling FEM and PEEC method,” IEEE Trans. Power Electron., vol. 31, no. 9, pp. 6442–6449, Sep. 2016. DOI: 10.1109/TPEL.2015.2499793.
  • M. Etemadrezaei and M. S. Lukic, “Coated-strand litz wire for multi-megahertz frequency applications,” IEEE Trans. Magn., vol. 52, no. 8, pp. 1–11, Aug. 2016. DOI: 10.1109/TMAG.2016.2550425.
  • R. P. Wojda, “Winding resistance and power loss for inductors with litz and solid-round wires,” presented at the Int. Power Electron. Motion Control Conf., Varna, Bulgaria, Sep. 2016, pp. 2–5.
  • R. P. Wojda and M. K. Kazimierczuk, “Winding resistance and power loss of inductors with litz and solid-round wires,” IEEE Trans. Ind. Appl., vol. 54, no. 4, pp. 3548–3557, Jul./Aug. 2018. DOI: 10.1109/TIA.2018.2821647.
  • S. Hiruma and H. Igarashi, “Fast 3-D analysis of eddy current in litz wire using the integral equation,” IEEE Trans. Magn., vol. 53, no. 6, pp. 1–4, Jun. 2017. DOI: 10.1109/TMAG.2017.2658679.
  • S. Hiruma, Y. Otomo, and H. Igarashi, “Eddy current analysis of litz wire using homogenization-based FEM in conjunction with integral equation,” IEEE Trans. Magn., vol. 54, no. 3, pp. 1–4, Mar. 2018. DOI: 10.1109/TMAG.2017.2772335.
  • Z. Liu, J. Zhu, and L. Zhu, “Accurate calculation of eddy current loss in litz-wired high-frequency transformer windings,” IEEE Trans. Magn., vol. 54, no. 11, pp. 1–5, Nov. 2018. DOI: 10.1109/TMAG.2018.2854894.
  • M. Jaritz, A. Hillers, and J. Biela, “General analytical model for the thermal resistance of windings made of solid or litz wire,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 668–684, Jan. 2019. DOI: 10.1109/TPEL.2018.2817126.
  • X. Liu et al., “Effective thermal conductivity calculation and measurement of litz wire based on the porous metal materials structure,” IEEE Trans. Ind. Electron., vol. 67, no. 4, pp. 2667–2677, Apr. 2020. DOI: 10.1109/TIE.2019.2910031.
  • P. A. Kyaw et al., “Thermal modeling of inductor and transformer windings including litz wire,” IEEE Trans. Power Electron., vol. 35, no. 1, pp. 867–881, Jan. 2020. DOI: 10.1109/TPEL.2019.2914661.
  • S. Gyimothy et al., “Loss computation methods for litz cables with emphasis on bundle-level skin effect,” IEEE Trans. Magn., vol. 55, no. 6, pp. 1–4, Jun. 2019. DOI: 10.1109/TMAG.2019.2890969.
  • H. Li, N. Zhang, S. Wang, and J. Zhu, “An analytical loss model of litz-wire windings for transformers excited by converters with winding configuration considered,” IEEE Trans. Magn., vol. 55, no. 9, pp. 1–5, Sep. 2019. DOI: 10.1109/TMAG.2019.2914459.
  • K. Umetani et al., “Analytical formulation of copper loss of litz wire with multiple twisting levels using measurable parameters,” IEEE Trans. Ind. Appl., vol. 57, no. 3, pp. 2407–2420, Mar. 2021. DOI: 10.1109/TIA.2021.3063993.
  • C. Roth and D. Gerling, “Novel calculation model for bunched litz wire,” presented at the IEEE Wireless Power Transf. Conf., London, UK, Jun. 2019, pp. 18–21.
  • A. S. Kaittan, “Comparison study between solid and litz wires of induction cooker,” presented at the 1st Int. Sci. Conf. of Engineering Sciences-3rd Sci. Conf. of Engineering Sciences, Diyala, Iraq, Jan. 2018, pp. 10–11.
  • N. J. Salk and C. M. Cooke, “A versatile simulation-assisted layered mesh analysis for generalized litz wire performance,” IEEE Trans. Magn., vol. 58, no. 6, pp. 1–8, Jun. 2022. DOI: 10.1109/TMAG.2022.3160759.
  • O. Gassab et al., “Accurate formulation of the skin and proximity effects in high-speed cable system,” IEEE Trans. Magn., vol. 10, no. 6, pp. 100682–100699, Jun. 2022. DOI: 10.1109/ACCESS.2022.3207746.
  • S. Cruciani, T. Campi, F. Maradei, and M. Feliziani, “Numerical modeling of litz wires based on discrete transpositions of strands and 2-D finite element analysis,” IEEE Trans. Power Electron., vol. 38, no. 5, pp. 6710–6719, May 2023. DOI: 10.1109/TPEL.2023.3240338.
  • Y. Dang, L. Zhu, Z. Liu, and S. Ji, “Analytical double-2D frequency-dependent leakage inductance model for litz-wired high-frequency transformer,” IEEE Trans. Ind. Electron., vol. 70, no. 12, pp. 12134–12144, Dec. 2023. DOI: 10.1109/TIE.2023.3239849.
  • Q. Meng and J. Biela, “Analytical model for HF-losses caused by 2D magnetic fields in litz wire,” IEEE Open J. Power Electron., vol. 4, pp. 639–657, Aug. 2023. DOI: 10.1109/OJPEL.2023.3309466.
  • F. M. Tuztasi, A. B. Yildiz, and H. Kelebek, “Modeling and analysis of DC-DC Cuk converter with coupled inductors,” presented at the 4th Int. Conf. on Circuits and Systems (ICCS), Chengdu, China, Sept. 2022, pp. 23–26.
  • M. K. Kazimierczuk, High Frequency Magnetic Components, John Wiley & Sons, 2009, pp. 1–508.
  • P. L. Dowell, “Effects of eddy currents in transformer windings,” Proc. Inst. Electr. Eng. UK, vol. 113, no. 8, pp. 1387–1394, Aug. 1966. DOI: 10.1049/piee.1966.0236.
  • M. Lu and K. D. T. Ngo, “Analytical calculation of proximity-effect resistance for planar coil with litz wire,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2984–2991, May/Jun. 2019. DOI: 10.1109/TIA.2018.2890366.
  • C. R. Sullivan, “Computationally efficient winding loss calculation with multiple windings, arbitrary waveforms and two dimensional or three-dimensional field geometry,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 142–150, Jan. 2001. DOI: 10.1109/63.903999.
  • F. Tourkhani and P. Viarouge, “Accurate analytical model of winding losses in round litz wire windings,” IEEE Trans. Magn., vol. 37, no. 1, pp. 538–543, Jan. 2001. DOI: 10.1109/20.914375.
  • C. R. Sullivan and R. Y. Zhang, “Analytical model for effects of twisting on litz-wire losses,” presented at the 15th IEEE Workshop on Control and Modeling for Power Electronics, Santander, Spain, Jun. 2014, pp. 22–25.
  • M. Rashid, Power Electronics Handbook, Butterworth-Heinemann, 2017.
  • M. K. Smedley and S. Cuk, “Dynamics of one cycle controlled Cuk converter,” IEEE Trans. Power Electron., vol. 10, no. 6, pp. 624–639, Nov. 1995. DOI: 10.1109/63.471282.
  • O. Kırcıoğlu, M. Ünlü, and S. Çamur, “Modeling and analysis of DC-DC SEPIC converter with coupled inductor,” presented at the Int. Symp. on Industrial Electronics, Banja Lukia, Bosnia Herzegovina, Nov. 2016, pp. 3–5.
  • N. Femia, G. Spagnuolo, and V. Tucci, “State-space models and order reduction for DC-DC switching converters in discontinuous modes,” IEEE Trans. Power Electron., vol. 10, no. 6, pp. 640–650, Nov. 1995. DOI: 10.1109/63.471283.
  • A. Davoudi, J. Jatskevich, and T. D. Ryebel, “Numerical state-space average-value modeling of PWM DC-DC converters operating in DCM and CCM,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 1003–1012, Jul. 2006. DOI: 10.1109/TPEL.2006.876848.
  • E. Şehirli, “Examining the impacts of DM filters to PFC isolated Ćuk converter for DCM operation by comparing Si and SiC MOSFET,” Sci. Rep., vol. 13, no. 1, Mar. 2023. DOI: 10.1038/s41598-023-31965-2.
  • R. M. Duarte and G. K. Felic, “Analysis of the coupling coefficient in inductive energy transfer systems,” Act. Passiv. Electron. Compon., vol. 2014, pp. 0–6, Nov. 2014. DOI: 10.1155/2014/951624.
  • C. K. Alexander and M. N. O. Sadiku, Fundamentals of Electric Circuit, McGraw-Hill Higher Education, 2007.
  • D. Liang and H. B. Shin, “Coupled inductor design method for 2 phase interleaved boost converters,” J. Power Electron., vol. 19, no. 2, pp. 344–352, Mar. 2019. DOI: 10.6113/JPE.2019.19.2.344.
  • L. R. Diana, “Practical magnetic design: inductors and coupled inductors,” Power Supply Design Seminar, Texas Instruments, 2012.
  • L. Dixon, Coupled Inductor Design, Unitrode Seminar Manual, 1993.
  • S. Cuk and Z. Zhang, “Coupled-inductor analysis and design,” presented at the 17th Annual IEEE Power Electronics Specialist Conf., Vancouver, Canada, Jun. 1986, pp. 23–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.