23
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance Enhancement of Droop Controlled DC Microgrid Using Solar Fed Hybrid BIFRED Converter with RBFNN

&
Received 22 Jun 2023, Accepted 11 Feb 2024, Published online: 25 Feb 2024

References

  • A. Qazi et al., “Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions,” IEEE Access, vol. 7, pp. 63837–63851, May 2019. DOI: 10.1109/ACCESS.2019.2906402.
  • A. Ali, K. Mahmoud and M. Lehtonen, “Optimal planning of inverter‐based renewable energy sources towards autonomous microgrids accommodating electric vehicle charging stations,” IET Gen. Trans. Dist., vol. 16, no. 2, pp. 219–232, Jan 2022. DOI: 10.1049/gtd2.12268.
  • V. Subramanian, I. Vairavasundaram and B. Aljafari, “Analysis of optimal load management using a stand-alone hybrid AC/DC microgrid system,” Int. Trans. Electrical Energy Syst., vol. 10, no. 1155, pp. 7519436, Apr 2023. DOI: 10.1155/2023/7519436.
  • S. Mahjoub, L. Chrifi-Alaoui, S. Drid and N. Derbel, “Control and implementation of an energy management strategy for a PV–wind–battery microgrid based on an intelligent prediction algorithm of energy production,” Energies, vol. 16, no. 4, pp. 1883, Feb 2023. DOI: 10.3390/en16041883.
  • K. Aurangzeb et al., “Energy forecasting using multiheaded convolutional neural networks in efficient renewable energy resources equipped with energy storage system,” Trans. Emerg. Tel. Tech., vol. 33, no. 2, pp. e3837, Feb 2022. DOI: 10.1002/ett.3837.
  • R. K. Arunachalam, K. Chandrasekaran, E. Rusu, N. Ravichandran and H. H. Fayek, “Economic feasibility of a hybrid microgrid system for a distributed substation,” Sustainability, vol. 15, no. 4, pp. 3133, Feb 2023. DOI: 10.3390/su15043133.
  • Z. Tang, Y. Yang and F. Blaabjerg, “Power electronics: the enabling technology for renewable energy integration,” CSEE J. Power Energy Syst., vol. 8, no. 1, pp. 39–52, Sep 2021. DOI: 10.17775/CSEEJPES.2021.02850.
  • C. Rao, A. Hajjiah, M. A. El-Meligy, M. Sharaf, A. T. Soliman and M. A. Mohamed, “A novel high-gain soft-switching DC-DC converter with improved P&O MPPT for photovoltaic applications,” IEEE Access, vol. 9, pp. 58790–58806, Apr 2021. DOI: 10.1109/ACCESS.2021.3072972.
  • S. M. Hashemzadeh, S. H. Hosseini, E. Babaei and M. Sabahi, “Design and modelling of a new three winding coupled inductor based high step‐up DC–DC converter for renewable energy applications,” IET Power Electron., vol. 15, no. 13, pp. 1322–1339, Oct 2022. DOI: 10.1049/pel2.12307.
  • A. H. Elmetwaly et al., “Modeling, simulation, and experimental validation of a novel MPPT for hybrid renewable sources integrated with UPQC: an application of Jellyfish search optimizer,” Sustainability, vol. 15, no. 6, pp. 5209, Mar 2023. DOI: 10.3390/su15065209.
  • J. Wu, L. Yang, Z. Lu and Q. Wang, “Robust adaptive composite control of DC–DC boost converter with constant power load in DC microgrid,” Energy Rep., vol. 9, pp. 855–865, 2023 Sep. DOI: 10.1016/j.egyr.2023.04.199.
  • N. Rana and S. Banerjee, “Development of an improved input-parallel output-series buck-boost converter and its closed-loop control,” IEEE Trans. Ind. Electron, vol. 67, no. 8, pp. 6428–6438, Sep 2020. DOI: 10.1109/TIE.2019.2938482.
  • L. A. Aloo, P. K. Kihato, S. I. Kamau and R. S. Orenge, “Modeling and control of a photovoltaic-wind hybrid microgrid system using GA-ANFIS,” Heliyon, vol. 9, no. 4, pp. e14678, Apr 2023. DOI: 10.1016/j.heliyon.2023.e14678.
  • K. S. Tey, S. Mekhilef, M. Seyedmahmoudian, B. Horan, A. T. Oo and A. Stojcevski, “Improved differential evolution-based MPPT algorithm using SEPIC for PV systems under partial shading conditions and load variation,” IEEE Trans. Ind. Inf., vol. 14, no. 10, pp. 4322–4333, Jan 2018. DOI: 10.1109/TII.2018.2793210.
  • V. F. Gruner et al., “Modified current sensorless incremental conductance algorithm for photovoltaic systems,” Energies, vol. 16, no. 2, pp. 790, Jan 2023. DOI: 10.3390/en16020790.
  • Y. Berkovich, B. Axelrod, R. Madar and A. Twina, “Improved Luo converter modifications with increasing voltage ratio,” IET Power Electron., vol. 8, no. 2, pp. 202–212, Feb 2015. DOI: 10.1049/iet-pel.2014.0135.
  • M. Das, M. Pal and V. Agarwal, “Novel high gain, high efficiency dc–dc converter suitable for solar PV module integration with three-phase grid tied inverters,” IEEE J. Photovoltaics, vol. 9, no. 2, pp. 528–537, Jan 2019. DOI: 10.1109/JPHOTOV.2018.2877006.
  • J. C. D. S. D. Morais, J. L. D. S. D. Morais and R. Gules, “Photovoltaic AC module based on a Cuk converter with a switched-inductor structure,” IEEE Trans. Ind. Electron, vol. 66, no. 5, pp. 3881–3890, Jul 2019. DOI: 10.1109/TIE.2018.2856202.
  • K. Nathan, S. Ghosh, Y. Siwakoti and T. Long, “A new DC–DC converter for photovoltaic systems: coupled-inductors combined Cuk-SEPIC converter,” IEEE Trans. Energy Convers., vol. 34, no. 1, pp. 191–201, Oct 2019. DOI: 10.1109/TEC.2018.2876454.
  • F. Mumtaz, N. Z. Yahaya, S. T. Meraj, B. Singh, R. Kannan and O. Ibrahim, “Review on non-isolated DC-DC converters and their control techniques for renewable energy applications,” Ain Shams Eng. J., vol. 12, no. 4, pp. 3747–3763, Dec 2021. DOI: 10.1016/j.asej.2021.03.022.
  • M. Z. Efendi, F. D. Murdianto, F. A. Fitri and L. Badriyah, “Power factor improvement on LED lamp driver using BIFRED converter,” Telkomnika, vol. 18, no. 1, pp. 571–578, Feb 2020. DOI: 10.12928/telkomnika.v18i1.13160.
  • H. Tarzamni, H. S. Gohari, M. Sabahi and J. Kyyrä, “Non-isolated high step-up DC-DC converters: comparative review and metrics applicability,” IEEE Trans. Power Electron., vol. 10, no. 1109, pp. 3264172, Apr 2023. DOI: 10.1109/TPEL.2023.3264172.
  • D. Venkatramanan and V. John, “Dynamic modeling and analysis of buck converter based solar PV charge controller for improved MPPT performance,” IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 6234–6246, Aug 2019. DOI: 10.1109/TIA.2019.2937856.
  • P. Agrawal, H. O. Bansal, A. R. Gautam, O. P. Mahela and B. Khan, “Transformer‐based time series prediction of the maximum power point for solar photovoltaic cells,” Energy Sci. Eng., vol. 10, no. 9, pp. 3397–3410, Sep 2022. DOI: 10.1002/ese3.1226.
  • M. Karabacak, L. M. Fernandez-Ramirez, T. Kamal and S. Kamal, “A new hill climbing maximum power tracking control for wind turbines with inertial effect compensation,” IEEE Trans. Ind. Electron, vol. 66, no. 11, pp. 8545–8556, Apr 2019. DOI: 10.1109/TIE.2019.2907510.
  • P. Manoharan et al., “Improved perturb and observation maximum power point tracking technique for solar photovoltaic power generation systems,” IEEE Syst. J., vol. 15, no. 2, pp. 3024–3035, Jul 2021. DOI: 10.1109/JSYST.2020.3003255.
  • A. K. Gupta et al., “Effect of various incremental conductance MPPT methods on the charging of battery load feed by solar panel,” IEEE Access, vol. 9, pp. 90977–90988, Jun 2021. DOI: 10.1109/ACCESS.2021.3091502.
  • T. Sutikno, A. C. Subrata and A. Elkhateb, “Evaluation of fuzzy membership function effects for maximum power point tracking technique of photovoltaic system,” IEEE Access, vol. 9, pp. 109157–109165, Aug 2021. DOI: 10.1109/ACCESS.2021.3102050.
  • R. B. Roy et al., “A comparative performance analysis of ANN algorithms for MPPT energy harvesting in solar PV system,” IEEE Access, vol. 9, pp. 102137–102152, Jul 2021. DOI: 10.1109/ACCESS.2021.3096864.
  • B. Long, Y. Liao, K. T. Chong, J. Rodríguez and J. M. Guerrero, “MPC-controlled virtual synchronous generator to enhance frequency and voltage dynamic performance in islanded microgrids,” IEEE Trans. Smart Grid, vol. 12, no. 2, pp. 953–964, Sep 2021. DOI: 10.1109/TSG.2020.3027051.
  • S. Cuoghi, R. Mandrioli, L. K. Pittala, V. Cirimele and M. Ricco, “Dual-active-bridge model and control for supporting fast synthetic inertial action,” Energies, vol. 15, no. 6, pp. 2295, Mar 2022. DOI: 10.3390/en15062295.
  • M. Abdelsattar et al., “Voltage stability improvement of an Egyptian power grid‐based wind energy system using STATCOM,” Wind Energy, vol. 25, no. 6, pp. 1077–1120, Jun 2022. DOI: 10.1002/we.2716.
  • D. Huang, H. Sun, J. Zhang, S. Zhao and Q. Zhou, “A data mining‐based method for mining key factors affecting transient voltage stability for power systems with renewable energy sources,” IET Generat. Trans. Dist., vol. 16, no. 4, pp. 617–628, Feb 2022. DOI: 10.1049/gtd2.12314.
  • G. Staņa, J. Voitkāns and K. Kroičs, “Supercapacitor constant-current and constant-power charging and discharging comparison under equal boundary conditions for DC microgrid application,” Energies, vol. 16, no. 10, pp. 4167, May 2023. DOI: 10.3390/en16104167.
  • J. L. Rodriguez-Amenedo, S. A. Gomez, M. Zubiaga, P. Izurza-Moreno, J. Arza and J. D. Fernandez, “Grid-forming control of voltage source converters based on the virtual-flux orientation,” IEEE Access, vol. 11, pp. 10254–10274, Jan 2023. DOI: 10.1109/ACCESS.2023.3240516.
  • Y. Zhang, C. Zhang, R. Yang, M. Molinas and X. Cai, “Current-constrained power-angle characterization method for transient stability analysis of grid-forming voltage source converters,” IEEE Trans. Energy Convers, vol. 38, no. 2, pp. 1338–1349, Jan 2023. DOI: 10.1109/TEC.2023.3236620.
  • I. Poonahela et al., “Hierarchical model-predictive droop control for voltage and frequency restoration in AC microgrids,” IEEE Open J. Ind. Electron. Soc., vol. 4, pp. 85–97, Jan 2023. DOI: 10.1109/OJIES.2023.3240070.
  • B. M. Reddy and S. Prakash, “Multi source bidirectional DC/DC converter by using PV-wind-battery based integration for domestic applications,” Power Res. A J. CPRI, vol. 16, no. 2, pp. 95–103, Dec 2020. DOI: 10.33686/pwj.v16i2.149753.
  • J. Ahmad et al., “A new high-gain DC-DC converter with a continuous input current for DC microgrid applications,” Energies, vol. 14, no. 9, pp. 2629, May 2021. DOI: 10.3390/en14092629.
  • Y. Shan, J. Hu, K. W. Chan, Q. Fu and J. M. Guerrero, “Model predictive control of bidirectional DC–DC converters and AC/DC interlinking converters—A new control method for PV-wind-battery microgrids,” IEEE Trans. Sustain. Energy, vol. 10, no. 4, pp. 1823–1833, Sep 2019. DOI: 10.1109/TSTE.2018.2873390.
  • M. Nagaiah and K. C. Sekhar, “Analysis of fuzzy logic controller based bi-directional DC-DC converter for battery energy management in hybrid solar/wind micro grid system,” IJECE, vol. 10, no. 3, pp. 2271, Jun 2020. DOI: 10.11591/ijece.v10i3.pp2271-2284.
  • T. Li et al., “Data-driven virtual inertia control method of doubly fed wind turbine,” Energies, vol. 14, no. 17, pp. 5572, Sep 2021. DOI: 10.3390/en14175572.
  • B. Xu, L. Zhang, Y. Yao, X. Yu, Y. Yang and D. Li, “Virtual inertia coordinated allocation method considering inertia demand and wind turbine inertia response capability,” Energies, vol. 14, no. 16, pp. 5002, Aug 2021. DOI: 10.3390/en14165002.
  • G. Zhang et al., “Forming a reliable hybrid microgrid using electric spring coupled with non-sensitive loads and ESS,” IEEE Trans. Smart Grid, vol. 11, no. 4, pp. 2867–2879, Jan 2020. DOI: 10.1109/TSG.2020.2970486.
  • A. Raghavan, P. Maan and A. K. Shenoy, “Optimization of day-ahead energy storage system scheduling in microgrid using genetic algorithm and particle swarm optimization,” Ieee Access, vol. 8, pp. 173068–173078, Sep 2020. DOI: 10.1109/ACCESS.2020.3025673.
  • S. Chandra and P. Gaur, “Radial basis function neural network technique for efficient maximum power point tracking in a solar photovoltaic system,” Proc. Comput. Sci., vol. 167, pp. 2354–2363, Jan 2020. DOI: 10.1016/j.procs.2020.03.288.
  • S. Yamparala, L. Lakshminarasimman and G. S. Rao, “Improvement of LVRT capability for DFIG based WECS by optimal design of FoPID controller using SLnO + GWO algorithm,” Int. J. Intell. Eng. Syst., vol. 16, pp. 202–213, Jan 2023. DOI: 10.22266/ijies2023.0228.18
  • Y. Shen, W. Wu, B. Wang and S. Sun, “Optimal allocation of virtual inertia and droop control for renewable energy in stochastic look-ahead power dispatch,” IEEE Trans. Sustain. Energy, vol. 14, no. 3, pp. 1881–1894, Mar 2023. DOI: 10.1109/TSTE.2023.3254149.
  • M. Effendy, M. Ashari and H. Suryoatmojo, “Performance comparison of proportional-integral and fuzzy-pi for a droop control of dc microgrid”, presented at the 2020 Int. Conf. on Sustain. Energy Engineering and Application (ICSEEA), Tangerang, Indonesia, Nov 2020, pp. 180–184. DOI: 10.1109/ICSEEA50711.2020.9306120.
  • V. Kumar, V. R. Teja, M. Singh and S. Mishra, “S, PV based off-grid charging station for electric vehicle,” IFAC-PapersOnLine, vol. 52, no. 4, pp. 276–281, Jan 2019. DOI: 10.1016/j.ifacol.2019.08.211.
  • W. Dong, S. Li and X. Fu, “Artificial neural network control of a standalone DC microgrid”, presented at 2018 Clemson Univ. Power Syst. Conf. (PSC) IEEE, USA, Sep 2018, pp. 1–5. DOI: 10.1109/PSC.2018.8664030.
  • I. A. Smadi, I. E. Atawi and A. A. Ibrahim, “An improved delayed signal cancelation for three-phase grid synchronization with DC offset immunity,” Energies, vol. 16, no. 6, pp. 2873, Mar 2023. DOI: 10.3390/en16062873.
  • F. Nejabatkhah, S. Danyali, S. H. Hosseini, M. Sabahi and S. M. Niapour, “Modeling and control of a new three-input DC–DC boost converter for hybrid PV/FC/battery power system,” IEEE Trans. Power Electron, vol. 27, no. 5, pp. 2309–2324, Oct 2012. DOI: 10.1109/TPEL.2011.2172465.
  • S. Saravanan, P. Usha Rani and M. P. Thakre, “Evaluation and improvement of a transformerless high-efficiency DC–DC converter for renewable energy applications employing a fuzzy logic controller,” MAPAN, vol. 37, no. 2, pp. 291–310, Jun 2022. DOI: 10.1007/s12647-021-00530-5.
  • P. Javeed, L. K. Yadav, P. V. Kumar, R. Kumar and S. Swaroop, “SEPIC converter for low power LED applications,” J. Phys. Conf. Ser., vol. 1818, no. 1, pp. 012220, Mar 2021. DOI: 10.1088/1742-6596/1818/1/012220.
  • F. Galea, M. Apap, C. Spiteri Staines and J. Cilia, “Design of a high efficiency wide input range isolated Cuk DC-DC converter for grid connected regenerative active loads,” presented at the World Eng. Convent., Geneva, Sep 2011.
  • B. Singh and R. Kushwaha, “Power factor preregulation in interleaved Luo converter-fed electric vehicle battery charger,” IEEE Trans. Ind. Appl., vol. 57, no. 3, pp. 2870–2882, Feb 2021. DOI: 10.1109/TIA.2021.3061964.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.