64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparative Analysis of Various Topologies for AC and DC Power Distribution Systems on Efficiency Grounds

&
Received 19 Jun 2023, Accepted 10 Feb 2024, Published online: 11 Mar 2024

References

  • T. McNichol, AC/DC: The Savage Tale of the First Standards War. New Jersey, USA: Wiley, 2011.
  • C. L. Sulzberger, “Triumph of AC-from pearl street to Niagara,” IEEE Power Energy Mag., vol. 1, no. 3, pp. 64–67, 2003. DOI: 10.1109/MPAE.2003.1197918.
  • P. Vandenheuvel, “Tesla vs Edison: Edison and Tesla-were they both right?” Electr. Connection, Victoria, Australia, no. 1, pp. 12–15, 2022.
  • W. R. Huber, George Westinghouse: Powering the World. North Carolina, USA: McFarland, 2022.
  • M. Mojović and J. Satarić, “Nikola Tesla and the social unconscious of Serbs: The dance of science with poetry, and of the earthly with the heavenly,” in The Tripartite Matrix in the Developing Theory and Expanding Practice of Group Analysis. London, England: Routledge, 2023, pp. 70–86.
  • P. Warrier and P. Shah, “Fractional order control of power electronic converters in industrial drives and renewable energy systems: A review,” IEEE Access, vol. 9, pp. 58982–59009, 2021. DOI: 10.1109/ACCESS.2021.3073033.
  • M. A. Hannan et al., “Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations,” Appl. Energy, vol. 251, pp. 113404, 2019. DOI: 10.1016/j.apenergy.2019.113404.
  • H. Wang and F. Blaabjerg, “Power electronics reliability: State of the art and outlook,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 6, pp. 6476–6493, 2021. DOI: 10.1109/JESTPE.2020.3037161.
  • A. Qazi et al., “Towards sustainable energy: A systematic review of renewable energy sources, technologies, and public opinions,” IEEE Access, vol. 7, pp. 63837–63851, 2019. DOI: 10.1109/ACCESS.2019.2906402.
  • H. E. Gelani, F. Dastgeer, Z. Idrees, K. Amjad, and N. Javed, “Barriers in the progress of domestic biogas plants in rural Pakistan,” Int. J. Sustain. Energy, vol. 41, no. 6, pp. 713–729, 2022. DOI: 10.1080/14786451.2021.1976179.
  • P. Saurabh, K. Velmurugan, N. Nagabhooshanam, G. Patange, G. Balamuruga Mohan Raj, C. Amarendra, and M. V. Kumar Reddy, "Intelligent controller design and fault prediction for renewable energy sources using bi-directional GRU and GEO Methods," Electr. Power Compon. Syst., vol. 52, no. 2, pp. 277–291. DOI: 10.1080/15325008.2023.2218368.
  • A. K. Dutta et al., “Battery-based energy storage and solarsolar technologies integrated for power matching and quality improvement using artificial intelligence,” Electr. Power Compon. Syst., vol. 52, no. 2, pp. 322–336, 2023. DOI: 10.1080/15325008.2023.2220323.
  • J. Shair, H. Li, J. Hu, and X. Xie, “Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics,” Renew. Sustain. Energy Rev., vol. 145, pp. 111111, 2021. DOI: 10.1016/j.rser.2021.111111.
  • H. E. Gelani, F. Dastgeer, M. Nasir, S. Khan, and J. M. Guerrero, “AC vs. DC distribution efficiency: Are we on the right path?” Energies, vol. 14, no. 13, pp. 4039, 2021. DOI: 10.3390/en14134039.
  • A. S. Ayobe and S. Gupta, “Comparative investigation on HVDC and HVAC for bulk power delivery,” Mater. Today: Proc., vol. 48, pp. 958–964, 2022. DOI: 10.1016/j.matpr.2021.06.025.
  • M. T. Alam, J. Rahaman, F. D. Dhali, and F. D. Dhali, “Technical comparison of modern HVAC and HVDC transmission system along with cost analysis,” JOCIE., vol. 8, no. 1, pp. 10–19, 2022. DOI: 10.46610/JCIE.2022.v08i01.002.
  • O. Samuelsson, “Gotland HVDC Link from 1954 Is Awarded IEEE Milestone [Society News],” IEEE Power Electron. Mag., vol. 4, no. 2, pp. 91–91, 2017. DOI: 10.1109/MPEL.2017.2692920.
  • B. Mahapatra and A. Nayyar, “Home energy management system (HEMS): Concept, architecture, infrastructure, challenges and energy management schemes,” Energy Syst., vol. 13, no. 3, pp. 643–669, 2022. DOI: 10.1007/s12667-019-00364-w.
  • S. Moussa, M. J. B. Ghorbal, and I. Slama-Belkhodja, “Bus voltage level choice for standalone residential DC nanogrid,” Sustain. Cities Soc., vol. 46, pp. 101431, 2019. DOI: 10.1016/j.scs.2019.101431.
  • F. Dastgeer, H. E. Gelani, H. M. Anees, Z. J. Paracha, and A. Kalam, “Analyses of efficiency/energy-savings of DC power distribution systems/microgrids: Past, present and future,” Int. J. Electr. Power Energy Syst., vol. 104, pp. 89–100, 2019. DOI: 10.1016/j.ijepes.2018.06.057.
  • M. Amin, Y. Arafat, S. Lundberg, and S. Mangold, “Low voltage DC distribution system compared with 230 V AC,” presented at the 2011 IEEE Electrical Power and Energy Conference, IEEE, Winnipeg, Canada, Oct. 2011, pp. 340–345.
  • D. J. Becker and B. J. Sonnenberg, “DC microgrids in buildings and data centers,” presented at the 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), IEEE, Amsterdam, Netherlands, Oct. 2011, pp. 1–7.
  • Z. Liu and M. Li, “Research on energy efficiency of DC distribution system,” AASRI Proc., vol. 7, pp. 68–74, 2014. DOI: 10.1016/j.aasri.2014.05.031.
  • D. Fregosi et al., “A comparative study of DC and AC microgrids in commercial buildings across different climates and operating profiles,” presented at the 2015 IEEE First International Conference on DC Microgrids (ICDCM), IEEE, Atlanta, GA, USA, Jun. 2015, pp. 159–164. DOI: 10.1109/ICDCM.2015.7152031.
  • A. Sannino, G. Postiglione, and M. H. Bollen, Feasibility of a DC network for commercial facilities,” presented at the Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No. 02CH37344), Vol. 3, IEEE, Pittsburgh, PA, USA, Oct. 2002, pp. 1710–1717.
  • R. Sirsi and Y. Ambekar, “Efficiency of DC microgrid on DC distribution system,” presented at the 2015 IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA), IEEE, Bangkok, Thailand, Nov. 2015, pp. 1–6.
  • R. Sirsi, S. Prasad, A. Sonawane, and A. Lokhande, “Efficiency comparison of AC distribution system and DC distribution system in microgrid,” presented at the 2016 International Conference on Energy Efficient Technologies for Sustainability (ICEETS), IEEE, Nagercoil, India, Apr. 2016, pp. 325–329. DOI: 10.1109/ICEETS.2016.7583774.
  • U. Boeke and M. Wendt, “DC power grids for buildings,” presented at the 2015 IEEE First International Conference on DC Microgrids (ICDCM), IEEE, Atlanta, GA, USA, Jun. 2015, pp. 210–214. DOI: 10.1109/ICDCM.2015.7152040.
  • R. Weiss, L. Ott, and U. Boeke, “Energy efficient low-voltage DC-grids for commercial buildings,” presented at the 2015 IEEE First International Conference on DC Microgrids (ICDCM), IEEE, Atlanta, GA, USA, Jun. 2015, pp. 154–158. DOI: 10.1109/ICDCM.2015.7152030.
  • R. K. Chauhan and B. S. Rajpurohit, “DC distribution system for energy efficient buildings,” presented at the 2014 Eighteenth National Power Systems Conference (NPSC), IEEE, Guwahati, India, Dec. 2014, pp. 1–6. DOI: 10.1109/NPSC.2014.7103813.
  • A. Goikoetxea, J. M. Canales, R. Sanchez, and P. Zumeta, “DC versus AC in residential buildings: Efficiency comparison,” presented at the Eurocon 2013, IEEE, Zagreb, Croatia, Jul. 2013, pp. 1–5.
  • T. Papadopoulos, G. Barzegkar-Ntovom, G. Kryonidis, D. Doukas, A. Marinopoulos, C. F. Covrig, and E. Kontis. High Resolution Profiles of Residential Appliances. IEEE Dataport, 2020.
  • D. J. Hammerstrom, “AC versus DC distribution systemsdid we get it right?” presented at the 2007 IEEE Power Engineering Society General Meeting, IEEE, Tampa, FL, USA, Jun. 2007, pp. 1–5. DOI: 10.1109/PES.2007.386130.
  • M. Starke, L. M. Tolbert, and B. Ozpineci, “AC vs. DC distribution: A loss comparison,” presented at the 2008 IEEE/PES Transmission and Distribution Conference and Exposition, IEEE, Chicago, IL, USA, Apr. 2008, pp. 1–7.
  • H. R. Atia et al., “Efficiency analysis of AC coupled and DC coupled microgrids considering load profile variations,” presented at the 2016 IEEE International Conference on Electro Information Technology (EIT), IEEE, Grand Forks, ND, USA, May 2016, pp. 0695–0699. DOI: 10.1109/EIT.2016.7535324.
  • U. Manandhar, A. Ukil, and T. K. K. Jonathan, “Efficiency comparison of DC and AC microgrid,” presented at the 2015 IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA), IEEE, Bangkok, Thailand, Nov. 2015, pp. 1–6.
  • F. Ahmad, F. Dastgeer, H. E. Gelani, S. Khan, and M. Nasir, “Comparative analyses of residential building efficiency for AC and DC distribution networks,” Bull. Pol. Acad. Sci.: Tech. Sci., vol. 69, no. 2, pp. e136732–136732, 2021. DOI: 10.24425/bpasts.2021.136732.
  • H. E. Gelani, S. Khan, F. Dastgeer, Z. Idrees, M. W. Afzal, and M. Nasir, “System efficiency for AC vs. DC distribution paradigms: A comparative evaluation,” Bull. Pol. Acad. Sci.: Tech. Sci., vol. 70, no. 1, 2022.
  • H. M. Anees et al., “A mathematical model‐based approach for DC multi‐microgrid performance evaluations considering intermittent distributed energy resources, energy storage, multiple load classes, and system components variations,” Energy Sci. Eng., vol. 9, no. 10, pp. 1919–1934, 2021. DOI: 10.1002/ese3.901.
  • K. Siraj and H. A. Khan, “DC distribution for residential power networks—A framework to analyze the impact of voltage levels on energy efficiency,” Energy Rep., vol. 6, pp. 944–951, 2020. DOI: 10.1016/j.egyr.2020.04.018.
  • H. Erteza Gelani et al., “Comparative efficiency and sensitivity analysis of AC and DC power distribution paradigms for residential localities,” Sustainability, vol. 14, no. 13, pp. 8220, 2022. DOI: 10.3390/su14138220.
  • F. Dastgeer and H. E. Gelani, “A comparative analysis of system efficiency for AC and DC residential power distribution paradigms,” Energy Build., vol. 138, pp. 648–654, 2017. DOI: 10.1016/j.enbuild.2016.12.077.
  • H. E. Gelani et al., “Efficiency comparison of AC and DC distribution networks for modern residential localities,” Appl. Sci., vol. 9, no. 3, pp. 582, 2019. DOI: 10.3390/app9030582.
  • Recom-Power. Available: https://recom-power.com/pdf/Powerline_ACDC/RACG150.pdf. Accessed: Jan. 4, 2023.
  • PDRB-300 Series. Available: https://www.cui.com/product/internalac-dc-power-supplies/din-rail/pdrb-300-series. Accessed: Jan. 4, 2023.
  • SureSine Morningstar Corporation. Available: https://www.morningstarcorp.com/products/suresine/. Accessed: Jan. 4, 2023.
  • Easy local, Residential string inverter high yield smart management. Available: https://www.gemenergy.com.au/wp-content/uploads/2019/12/SG8K-DDatasheet.pdf. Accessed: Jan. 4,2023.
  • 50 Watt QSW DC/DC converters. Available: http://calex.com/pdf/qsw.pdf. Accessed: Jan. 4, 2023.
  • 300W isolated DC-DC converter. Available: https://toshiba.semicon-storage.com/ap-en/semiconductor/design-development/referencedesign/articles/300w-Isolated-dc-dc_powermanagement_rd024.html. Accessed: Jan 4, 2023.
  • Tidm-hv-1ph-dcac. Available: http://www.ti.com/tool/TIDM-HV1PH-DCAC?keyMatch=TIDM-HV-1PH-DCAC&tisearch=Search-EN-everything&usecase=GPN. Accessed: Jan. 4, 2023.
  • Eco-logisch. Available: https://www.ecologisch.nl/pdfupload/SMA%20SB%201700.pdf. Accessed: Jan. 4, 2023.
  • ABB. Available: https://library.e.abb.com/public/056a93c2644e4f15b55475647c6e0156/PVI-5000- ENRev%20E.pdf. Accessed: Jan.4, 2023.
  • Inl.gov. Available: https://inldigitallibrary.inl.gov/sites/sti/sti/5538925.pdf. Accessed: Jan. 4, 2023.
  • APECOR. Available: http://apecor.com/pages/products/highpower/apecor_ev_bidirectional_dcdc.pdf. Accessed: Jan. 4, 2023.
  • PVWatts – NREL-GOV [Online]. Available: https://pvwatts.nrel.gov/pvwatts.php. Accessed: Jan. 4, 2023.
  • H. Tahir, H. E. Gelani, M. Saleem, and A. Hussain, “Efficiency and reliability assessment-based selection of the optimal common bus in hub-stations,” Electronics, vol. 12, no. 16, pp. 3411, 2023. DOI: 10.3390/electronics12163411.
  • A. Rasheed, S. Khan, H. E. Gelani, and F. Dastgeer, August)”AC vs. DC home: An efficiency comparison,” presented at the 2019 International Symposium on Recent Advances in Electrical Engineering (RAEE), IEEE, Islamabad, Pakistan, Vol. 4, 2019, pp. 1–6. DOI: 10.1109/RAEE.2019.8887064.
  • H. Tahir, J. S. Lee, and R. Y. Kim, “Efficiency evaluation of the microgrid for selection of common bus using copula function-based efficiency curves of the converters,” Sustain. Energy Technol. Assess., vol. 48, pp. 101621, 2021. DOI: 10.1016/j.seta.2021.101621.
  • K. Garbesi, V. Vossos, and H. Shen, Catalog of DC Appliances and Power Systems. Berkeley, USA: Lawrence Berkeley National Laboratory, 2012.
  • M. Fidan, “Investigation of energy generation potential of solar panels placed as shutters for windows in residential,” Electr. Power Compon. Syst., vol. 51, no. 20, pp. 2573–2587, 2023. DOI: 10.1080/15325008.2023.2246961.
  • D. H. Park, T. Hira, S. S. Park, and R. Y. Kim, “Power management of hybrid energy storage system based on single-objective model predictive control in a DC distribution network,” ICEE., Korea, vol. 2022, pp. 1–4, 2022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.