33
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enhancing ASC Energy Storage: A Component-Based Modeling Approach

, , , , &
Received 22 Sep 2023, Accepted 03 Mar 2024, Published online: 25 Mar 2024

References

  • P. K. Pathak, A. K. Yadav, S. Padmanaban and P. A. Alvi, “Design of robust multi-rating battery charger for charging station of electric vehicles via solar PV system,” J. Electric Power Components Syst., vol. 50, no. 14–15, pp. 751–761, 2022. DOI: 10.1080/15325008.2022.2139870.
  • S. Ahmad Hamidi, D. M. Ionel and A. Nasiri, “Modeling and management of batteries and ultracapacitors for renewable energy support in electric power systems – An overview,” J. Electric Power Component. Syst., vol. 43, no. 12, pp. 1434–1452, 2015. DOI: 10.1080/15325008.2015.1038757.
  • P. K. Pathak, A. Kumar Yadav, S. Padmanaban, P. A. Alvi and I. Kamwa, “Fuel cell-based topologies and multi-input DC–DC power converters for hybrid electric vehicles: a comprehensive review,” IET Generat. Trans. Distribut., vol. 16, pp. 2111–2139, 2022. DOI: 10.1049/gtd2.12439.
  • B. A. Mayingi, A. T. Puati Zau, S. P. D. Chowdhury and L. J. Ngoma, “Design of an improved hybrid lithium-ion-ultracapacitor energy storage system for transport vehicles,” J. Electric Power Components Syst., vol. 51, pp. 1–22, 2023. DOI: 10.1080/15325008.2023.2261467.
  • P. B. Karandikar, D. B. Talange, U. Mhaskar and R. Bansal, “Investigations for parameter improvement of manganese oxide–based aqueous supercapacitors,” J. Mater. Manufact. Processes, vol. 27, no. 11, pp. 1164–1170, 2012. DOI: 10.1080/10426914.2012.663139.
  • P. B. Karandikar, D. B. Talange, U. Mhaskar and R. Bansal, “Validation of capacitance and equivalent series resistance model of manganese oxide-based aqueous supercapacitor,” J. Electric Power Component. Syst., vol. 40, no. 10, pp. 1105–1118, 2012. DOI: 10.1080/15325008.2012.678235.
  • P. Kumar Kushwaha and C. Bhattacharjee, “An extensive review of the configurations, modeling, storage technologies, design parameters, sizing methodologies, energy management, system control, and sensitivity analysis aspects of hybrid renewable energy systems,” J. Electric Power Component. Syst., vol. 51, no. 20, pp. 2603–2642, 2023. DOI: 10.1080/15325008.2023.2210556.
  • B. De, S. Banerjee, T. Pal, K. D. Verma, P. K. Manna and K. K. Kar, “Graphene/reduced graphene oxide as electrode materials for supercapacitors,” in Handbook Nanocomposite Supercapacitor Materials II, vol. 302, Berlin, Heidelberg, Germany: Springer International Publishing, 2022, pp. 271–296. DOI: 10.1007/978-3-030-52359-6_11.
  • M. Jana et al., “Superior performance of asymmetric supercapacitor based on reduced graphene oxide–manganese carbonate as positive and sono-chemically reduced graphene oxide as negative electrode materials,” J. Power Sources, vol. 303, no. 1, pp. 222–233, 2016. DOI: 10.1016/j.jpowsour.2015.10.107.
  • X. Ma et al., “Construction of high-performance asymmetric supercapacitor based on FeCo-LDH@C3N4 composite electrode material with penetrating structure,” J. Energy Storage, vol. 56, pp. 106034, 2022. DOI: 10.1016/j.est.2022.106034.
  • N. R. Chodankar, D. P. Dubal, S.-H. Ji and D.-H. Kim, “Highly efficient and stable negative electrode for asymmetric supercapacitors based on graphene/FeCo2O4 nanocomposite hybrid material,” Int. J. Electrochim. Acta, vol. 295, pp. 195–203, 2019. DOI: 10.1016/j.electacta.2018.10.125.
  • S. K. Hwang, S. Patil, N. Chodankar, Y. S. Huh and Y.-K. Han, “An aqueous high-performance hybrid supercapacitor with MXene and Polyoxometalates electrodes,” Chem. Eng. J., vol. 427, pp. 131854, 2021. DOI: 10.1016/j.cej.2021.131854.
  • T. C. Chou, R. A. Doong, C. C. Hu, S. Zhang, Bingsen and S. Dang, “Hierarchically porous carbon with manganese oxides as highly efficient electrode for asymmetric supercapacitors,” J. ChemSusChem, vol. 7, no. 3, pp. 841–847, 2014. DOI: 10.1002/cssc.201301014.
  • A. Bello et al., “Asymmetric supercapacitor based on nanostructured graphene foam/polyvinyl alcohol/formaldehyde and activated carbon electrodes,” J. Power Sources, vol. 273, pp. 305–311, 2015. DOI: 10.1016/j.jpowsour.2014.09.094.
  • M. Rajkumar, C.-T. Hsu, T.-H. Wu, M.-G. Chen and C.-C. Hu, “Advanced materials for aqueous supercapacitors in the asymmetric design,” J. Progress Nat. Sci. Mater. Int., vol. 25, no. 6, pp. 527–544, 2015. DOI: 10.1016/j.pnsc.2015.11.012.
  • X. Zhang, L. Hou, A. Ciesielski and P. Samorì, “2D materials beyond graphene for high-performance energy storage applications,” J. Adv. Energy Mater., vol. 6, no. 23, pp. 1–10, 2016. DOI: 10.1002/aenm.201600671.
  • A. Juno Rose, A. Samage, D. Ghosh and S. K. Nataraj, “Preparation of sustainable and binder-free electrode materials for high energy asymmetric supercapacitor applications: a cleaner alternative,” J. Cleaner Prod., vol. 417, no. 47, pp. 137956, 2023. DOI: 10.1016/j.jclepro.2023.137956.
  • J. Chang et al., “Asymmetric supercapacitors based on Graphene/MnO2 nanospheres and Graphene/MoO3 nanosheets with high energy density,” Adv. Funct. Mater., vol. 23, no. 40, pp. 5074–5083, 2013. DOI: 10.1002/adfm201301851.
  • D. Mohapatra, S. Parida, S. Badrayyana and B. K. Singh, “High-performance flexible asymmetric CNO-ZnO//ZnO supercapacitor with an operating voltage of 1.8 V in aqueous medium,” J. Appl. Mater. Today, vol. 7, no. 1, pp. 212–221, 2017. DOI: 10.1016/j.apmt.2017.03.006.
  • I. Dwivedi, S. Mathew, K. Priya, B. Panda and P. B. Karandikar, “A hybrid capacitor with an innovative double layer electrode,” 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 2016, pp. 1–4. DOI: 10.1109/ICPEICES.2016.7853203.
  • K. Wickramaarachchi, M. M. Sundaram and D. Henry, “Surfactant-mediated electrodeposition of a pseudocapacitive manganese dioxide – a twofer,” J. Energy Storage, vol. 55, no. 1, pp. 105403, 2022. DOI: 10.1016/j.est.2022.105403.
  • S. G. Krishnan et al., “Improving the symmetry of asymmetric supercapacitors using battery-type positive electrodes and activated carbon negative electrodes by mass and charge balance,” J. Electroanal. Chem., vol. 805, no. 1, pp. 126–132, 2017. DOI: 10.1016/j.jelechem.2017.10.029.
  • J. Cherusseri, D. Pandey and J. Thomas, “Symmetric, asymmetric, and battery‐Type supercapacitors using two‐dimensional nanomaterials and composites,” J. Batteries & Supercaps, vol. 3, no. 9, pp. 860–875, 2020. DOI: 10.1002/batt.201900230.
  • C.-T. Hsu and C.-C. Hu, “Synthesis and characterization of mesoporous spinel NiCo2O4 using surfactant-assembled dispersion for asymmetric supercapacitors,” J. Power Sources, vol. 242, no. 1, pp. 662–671, 2013. DOI: 10.1016/j.jpowsour.2013.05.130.
  • H. Lee et al., “A flexible, high-energy density, and temperature-tolerant asymmetric supercapacitor based on water-in-salt gel electrolyte,” J. Alloys Compounds, vol. 960, pp. 170714, 2023. DOI: 10.1016/j.jallcom.2023.170714.
  • L. Fan et al., “Synthesis of nanosphere-like vanadium selenide cathode for high performance asymmetric hybrid supercapacitors,” J. Electrochim Acta, vol. 465, no. 1, pp. 142970, 2023. DOI: 10.1016/j.electacta.2023.142970.
  • S. P. Alexprabu and K. Sathiyasekar, “Optimization of battery energy storage system in active distribution networks,” J. Electric Power Components Syst., vol. 51, no. 16, pp. 1697–1709, 2023. DOI: 10.1080/15325008.2023.2202672.
  • T. C. Doan, B. Muthukutty and H. Yoo, “High mass-loading of nickel-cobalt layered double hydroxide on 3D-printed electrode for cathode of asymmetric supercapacitor,” J. Energy Storage, vol. 68, no. 1, pp. 107648, 2023. DOI: 10.1016/j.est.2023.107648.
  • M. Bhajekar, A. Karandikar, S. Joshi, S. Chapekar, P. B. Karandikar and M. J. Bhalerao, “Comparative analysis of symmetrical, asymmetrical and hybrid supercapacitors as a pulse current device,” Int. Conf. Futuristic Technol. India, vol. 1, no. 1, pp. 1–5, 2022. DOI: 10.1109/INCOFT55651.2022.10094449.
  • S. Gite, R. S. Ambekar, S. B. A. Aaditya, S. Joshi and P. B. Karandikar, “Analysis of asymmetrical supercapacitor with horizontally configured electrodes,” J. Energy Storage, vol. 68, no. 1, pp. 107829, 2023. DOI: 10.1016/j.est.2023.107829.
  • S. B. A. Aaditya, S. Chakrabarti and P. B. Karandikar, “Enhancement of charge storage of supercapacitor using parametric variations,” presented at the 2023 Int. Conf. on Electrical, Communication and Computer Engineering (ICECCE), Dubai, UAE, 2023, pp. 1–6. DOI: 10.1109/ICECCE61019.2023.10441999.
  • M. Bhajekar, S. B. A. Aaditya, S. Chakrabarti, S. Chaphekar, P. B. Karandikar and M. J. Bhalerao, “Comparative study of vertical and horizontal asymmetrical supercapacitors,” presented at the 2022 Int. Conf. on Comput. Power and Communications (ICCPC), vol. 1, 2022, pp. 230–235. DOI: 10.1109/ICCPC55978.2022.10072257.
  • D. Jha, V. Karkaria, P. B. Karandikar and R. S. Desai, “Statistical modeling of hybrid supercapacitor,” J. Energy Storage, vol. 46, no. 1, pp. 103869, 2022. DOI: 10.1016/j.est.2021.103869.
  • L. Zhang and X. S. Zhao, “Carbon-based materials as supercapacitor electrodes,” Chem. Soc. Rev., vol. 38, no. 9, pp. 2520–2531, 2009. DOI: 10.1039/b813846j.
  • S. Mahajan, S. B. A. Aaditya, A. Avasthi and P. B. Karandikar, “Investigation of fork shaped electrodes for asymmetric supercapacitors,” presented at the 2023 4th Int. Conf. for Emerging Technology (INCET), vol. 1, Belgaum, India, 2023, pp. 1–6. DOI: 10.1109/INCET57972.2023.10170122.
  • M. Bhajekar, S. B. A. Aaditya, S. Praveenkumar, R. Kaviarasan and P. B. Karandikar, 2023. “Symmetrical Supercapacitor with Asymmetric Electrode Construction,” presented at the 2023 3rd Asian Conf. on Innov. in Technology (ASIANCON), vol. 1, Ravet IN, India, pp. 1–6. DOI: 10.1109/ASIANCON58793.2023.10270378.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.