49
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Accurate Stability Analysis of Three-Phase Converter System Connected to Weak Grid under Coordinate System Transformation

, ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon show all
Received 17 Jul 2023, Accepted 02 Mar 2024, Published online: 26 Mar 2024

REFERENCES

  • N. K. Vemula and S. K. Parida, “Enhancement of small signal stability in inverter-dominated microgrid with optimal internal model controller,” Int. Trans. Electr. Energ. Syst., vol. 30, no. 8, pp. e12471, Aug. 2020. DOI: 10.1002/2050-7038.12471.
  • Y. Zhang, M. Tian, H. Zhang, J. Song and W. Zhang, “Admittance modeling and stability enhancement of grid-connected inverter considering frequency coupling in weak grids,” Electr. Power Syst. Res., vol. 209, pp. 108034, 2022. Aug. DOI: 10.1016/j.epsr.2022.108034.
  • M. Okati, M. Eslami and M. Jafari Shahbazzadeh, “A non-isolated DC-DC converter with dual working modes and positive output voltage,” Electr. Power Components Syst., vol. 49, no. 13–14, pp. 1143–1157, 2022. DOI: 10.1080/15325008.2022.2049662.
  • S. Gopinathan, V. Seshagiri Rao, K. Sundaramoorthy and B. Mathew Jos, “Family of high-gain quadratic symmetrical active impedance network-based DC-DC converters with fault ride-through feature,” Electr. Power Components Syst., vol. 51, pp. 1–17, 2023. DOI: 10.1080/15325008.2023.2238711.
  • M. Hanifehpour, R. Pashaee, H. Rasouliyan, H. Aalamshahi, H. Bagherzadeh and Y. Naderi, “No-isolated high gain DC/DC converter with low input current ripple suitable for renewable applications,” Electr. Power Components Syst., vol. 48, no. 11, pp. 1171–1184, 2020. DOI: 10.1080/15325008.2020.1834017.
  • O. Azizipour and H. Hojabri, “Single phase high frequency AC link DC/AC converter for photovoltaic systems,” Electr. Power Components Syst., vol. 51, no. 1, pp. 59–70, 2023. DOI: 10.1080/15325008.2022.2160522.
  • S. Nazrin Salma, S. Dhanalakshmi and M. Rajkumar, “Design and control of modified super lift luo converter for electric vehicle applications,” Electr. Power Components Syst., vol. 51, no. 14, pp. 1474–1485, 2023. DOI: 10.1080/15325008.2023.2199744.
  • L. Xie, S. Zeng, J. Liu, Z. Zhang and J. Yao, “Control and stability analysis of the LCL-type grid-connected converter without phase-locked loop under weak grid conditions,” Electronics (Switzerland), vol. 11, no. 20, pp. 3322, Oct. 2022. DOI: 10.3390/electronics11203322.
  • M. Eskandari, A. V. Savkin, H. H. Alhelou and F. Blaabjerg, “Explicit impedance modeling and shaping of grid-connected converters via an enhanced PLL for stabilizing the weak grid connection,” IEEE Access, vol. 10, pp. 128874–128889, 2022. DOI: 10.1109/ACCESS.2022.3226818.
  • S. Zhou, et al., “An optimal network constraint-based joint expansion planning model for modern distribution networks with multi-types intermittent RERs,” Renew. Energy, vol. 194, pp. 137–151, 2022. DOI: 10.1016/j.renene.2022.05.068.
  • S. Zhou, et al., “A multiple uncertainty-based bi-level expansion planning paradigm for distribution networks complying with energy storage system functionalities,” Energy, vol. 275, pp. 127511, 2023. DOI: 10.1016/j.energy.2023.127511.
  • W. Sun, L. Huang, Z. Liu, Q. Li, C. Zhao and D. Mu, “Distributed controller design and stability criterion for microgrids with time-varying delay and rapid switching communication topology,” Sustain. Energy, Grids Netw., vol. 29, pp. 100566, 2022. Mar. DOI: 10.1016/j.segan.2021.100566.
  • S. Zhou, et al., “A novel unified planning model for distributed generation and electric vehicle charging station considering multi-uncertainties and battery degradation,” Appl. Energy, vol. 348, pp. 121566, 2023. DOI: 10.1016/j.apenergy.2023.121566.
  • S. Lavanya Devi and R. Vinifa, “Assessment of novel self-tuned emotional learning-based intelligent controller for bidirectional cascaded quasi-Z-source DC–DC converter control,” Electr. Power Components Syst., vol. 51, pp. 1–10, 2023. DOI: 10.1080/15325008.2023.2269927.
  • J. Wang, et al., “Dual-frequency bands grid impedance emulator for stability test of grid-connected converters,” IEEE Trans. Power Electron., vol. 37, no. 11, pp. 13070–13080, Nov. 2022. DOI: 10.1109/TPEL.2022.3173958.
  • R. Ramadan, et al., “Towards energy‐efficient smart homes via precise non‐intrusive load disaggregation based on hybrid ANN‐PSO,” Energy Sci. Eng., vol. 11, no. 7, pp. 2535–2551, 2023. DOI: 10.1002/ese3.1472.
  • S. Jiang, Y. Zhu and G. Konstantinou, “Settling-angle-based stability analysis for multiple current-controlled converters,” IEEE Trans. Power Electron., vol. 37, no. 11, pp. 12992–12997, Nov. 2022. DOI: 10.1109/TPEL.2022.3185141.
  • J. Luo, Y. Zou, S. Bu and U. Karaagac, “Converter-driven stability analysis of power systems integrated with hybrid renewable energy sources,” Energies, vol. 14, no. 14, pp. 4290, 2021. DOI: 10.3390/en14144290.
  • E. Zhao, Y. Han, X. Lin, P. Yang, F. Blaabjerg and A. S. Zalhaf, “Impedance characteristics investigation and oscillation stability analysis for two-stage PV inverter under weak grid condition,” Electr. Power Syst. Res., vol. 209, pp. 108053, Aug. 2022. DOI: 10.1016/j.epsr.2022.108053.
  • Z. Zeng, J. Zhao, Z. Liu, L. Mao and K. Qu, “Stability assessment and parametric sensitivity analysis based on extended Gershgorin Theorem for multiple grid-connected converters,” Electr. Power Syst. Res., vol. 214, pp. 108913, Jan. 2023. DOI: 10.1016/j.epsr.2022.108913.
  • G. Pinares and M. Bongiorno, “Independent channel design approach for stability analysis of grid-connected converters,” Electr. Power Syst. Res., vol. 189, pp. 106774, Dec. 2020. DOI: 10.1016/j.epsr.2020.106774.
  • H. Deng and J. Fang, “State-space modeling, stability analysis, and controller design of grid-forming converters with distributed virtual inertia,” Front Energy Res., vol. 10, pp. 833387, Apr. 2022. DOI: 10.3389/FENRG.2022.833387/BIBTEX.
  • H. S. Kim, H. S. Jung and S. K. Sul, “Discrete-time voltage controller for voltage source converters with LC filter based on state-space models,” IEEE Trans. Ind. Appl., vol. 55, no. 1, pp. 529–540, Jan. 2019. DOI: 10.1109/TIA.2018.2868552.
  • D. Yang and X. Wang, “Unified modular state-space modeling of grid-connected voltage-source converters,” IEEE Trans. Power Electron., vol. 35, no. 9, pp. 9700–9715, Sep. 2020. DOI: 10.1109/TPEL.2020.2965941.
  • J. Liu, et al., “Impact of power grid strength and PLL parameters on stability of grid-connected DFIG wind farm,” IEEE Trans. Sustain. Energy, vol. 11, no. 1, pp. 545–557, Jan. 2020. DOI: 10.1109/TSTE.2019.2897596.
  • X. Peng, R. Chen, J. Zhou, S. Qin, R. Bi and H. Sun, “Research on mechanism and damping control strategy of DFIG-based wind farm grid-connected system SSR based on the complex torque method,” Electronics, vol. 10, no. 14, pp. 1640, Jul. 2021. DOI: 10.3390/electronics10141640.
  • J. Hu, B. Wang, W. Wang, H. Tang, Y. Chi and Q. Hu, “Small signal dynamics of DFIG-based wind turbines during riding through symmetrical faults in weak AC grid,” IEEE Trans. Energy Convers., vol. 32, no. 2, pp. 720–730, Jun. 2017. DOI: 10.1109/TEC.2017.2655540.
  • S. Jiang and G. Konstantinou, “Generalized impedance model and interaction analysis for multiple grid-forming and grid-following converters,” Electric Power Syst. Res., vol. 214, pp. 108912, Jan. 2023. DOI: 10.1016/j.epsr.2022.108912.
  • S. Gao, H. Zhao, Y. Gui, J. Luo and F. Blaabjerg, “Impedance analysis of voltage source converter using direct power control,” IEEE Trans. Energy Convers., vol. 36, no. 2, pp. 831–840, Jun. 2021. DOI: 10.1109/TEC.2020.3020181.
  • H. Xu, F. Nie, Z. Wang, S. Wang and J. Hu, “Impedance modeling and stability factor assessment of grid-connected converters based on linear active disturbance rejection control,” J. Mod. Power Syst. Clean Energy, vol. 9, no. 6, pp. 1327–1338, Nov. 2021. DOI: 10.35833/MPCE.2021.000280.
  • Y. Wang, Q. Xu and J. M. Guerrero, “Effect of frequency coupling on stability analysis of a grid-connected modular multilevel converter system,” Energies, vol. 14, no. 20, pp. 6580, Oct. 2021. DOI: 10.3390/en14206580.
  • P. Mao, M. Zhang and W. Zhang, “A canonical small-signal linearized model and a performance evaluation of the SRF-PLL in three phase grid inverter system,” J. Power Electron., vol. 14, no. 5, pp. 1057–1068, 2014. DOI: 10.6113/JPE.2014.14.5.1057.
  • S. H. Hwang and S. W. Seo, “Offset error compensation algorithm for grid voltage measurement of grid-connected single-phase inverters based on SRF-PLL,” J. Power Electron., vol. 20, no. 3, pp. 794–801, May 2020. DOI: 10.1007/S43236-020-00077-9/FIGURES/14.
  • S. A. Lakshmanan, B. S. Rajpurohit and A. Jain, “Optimum setting algorithm based PI controller tuning for SRF-PLL used grid synchronization system,” Electr. Power Components Syst., vol. 51, no. 6, pp. 538–554, 2023. DOI: 10.1080/15325008.2023.2178544.
  • Z. Zeng, J. Zhao, Z. Liu, L. Mao and K. Qu, “Stability assessment for multiple grid-connected converters based on impedance-ratio matrix and Gershgorin’s Theorem,” Int. J. Elect. Power Energy Syst., vol. 138, pp. 107869, Jun. 2022. DOI: 10.1016/j.ijepes.2021.107869.
  • X. Zhou, D. Xu, Y. Huang, X. Zhou, D. Xu and Y. Huang, “Impedance characteristics and harmonic analysis of LCL-type grid-connected converter cluster,” Energies, vol. 15, no. 10, pp. 3708, May 2022. DOI: 10.3390/en15103708.
  • Y. H. Ku, “Transient analysis of rotating machines and stationary networks by means of rotating reference frames,” Trans. Am. Inst. Electr. Eng., vol. 70, no. 1, pp. 943–957, 1951. DOI: 10.1109/T-AIEE.1951.5060505.
  • H. Gong, X. Wang and D. Yang, “DQ-frame impedance measurement of three-phase converters using time-domain MIMO parametric identification,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 2131–2142, Feb. 2021. DOI: 10.1109/TPEL.2020.3007852.
  • C. Henderson, A. Egea-Alvarez and L. Xu, “Analysis of multi-converter network impedance using MIMO stability criterion for multi-loop systems,” Electr. Power Syst. Res., vol. 211, pp. 108542, Oct. 2022. DOI: 10.1016/j.epsr.2022.108542.
  • M. Ramezani, S. Li and Y. Sun, “DQ-reference-frame based impedance and power control design of islanded parallel voltage source converters for integration of distributed energy resources,” Electr. Power Syst. Res., vol. 168, pp. 67–80, Mar. 2019. DOI: 10.1016/j.epsr.2018.10.017.
  • B. Wen, D. Boroyevich, R. Burgos, P. Mattavelli and Z. Shen, “Analysis of D-Q small-signal impedance of grid-tied inverters,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 675–687, Jan. 2016. DOI: 10.1109/TPEL.2015.2398192.
  • Y. Zhang, M. G. L. Roes, M. A. M. Hendrix and J. L. Duarte, “Symmetric-component decoupled control of grid-connected inverters for voltage unbalance correction and harmonic compensation,” Int. J. Elect. Power Energy Syst., vol. 115, pp. 105490, Feb. 2020. DOI: 10.1016/j.ijepes.2019.105490.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.