52
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Using Fractional-order Technique and Non-linear Surface to Improve the Performance of the Backstepping Control of Multi-rotor Wind Power Systems

, , &
Received 20 Jan 2024, Accepted 06 Mar 2024, Published online: 09 Apr 2024

References

  • A. Achar et al., “Self-filtering based on the fault ride-through technique using a robust model predictive control for wind turbine rotor current,” Sci. Rep., vol. 14, no. 1, pp. 1905, 2024. DOI: 10.1038/s41598-023-51110-3.
  • H. Benbouhenni, Z. Dalal, B. Nicu, and C. Ilhami, “A new PI(1 +PI) controller to mitigate power ripples of a variable-speed dual-rotor wind power system using direct power control,” Energy Rep., vol. 10, pp. 3580–3598, 2023. DOI: 10.1016/j.egyr.2023.10.007.
  • H. Benbouhenni, G. Hamza, and C. Ilhami, “Comparative study of sliding mode control with synergetic control for rotor side inverter of the DFIG for multi-rotor wind power systems,” Majlesi J. Mechatronic Syst., vol. 11, no. 2, pp. 29–37, 2023.
  • N. Debdouche, B. Deffaf, H. Benbouhenni, Z. Laid, and M. I. Mosaad, “Direct power control for three-level multifunctional voltage source inverter of pv systems using a simplified super-twisting algorithm,” Energies, vol. 16, no. 10, pp. 4103, 2023. DOI: 10.3390/en16104103.
  • H. Benbouhenni, B. Elhadj, G. Hamza, B. Nicu, and C. Ilhami, “A new PD(1 + PI) direct power controller for the variable-speed multi-rotor wind power system driven doubly-fed asynchronous generator,” Energy Rep., vol. 8, pp. 15584–15594, 2022. DOI: 10.1016/j.egyr.2022.11.136.
  • D. Naamane, H. Benbouhenni, D. Brahim, A. Guessabi, and Z. Laid, “Predictive direct power control with phase-locked loop technique of three-level neutral point clamped inverter based shunt active power filter for power quality improvement,” Circuit Theory Apps, 2024. DOI: 10.1002/cta.3871.
  • G. Amina, A. Dalila, and H. Benbouhenni, “Etude comparative entre la commande DPC, DPC-HYN et DPC-RNA de la GSAP,” J. Adv. Res. Sci. Technol., vol. 5, no. 2, pp. 735–753, 2018.
  • H. Benbouhenni et al., “Fractional-order synergetic control of the asynchronous generator-based variable-speed multi-rotor wind power systems,” IEEE Access, vol. 11, pp. 133490–133508, 2023. DOI: 10.1109/ACCESS.2023.3335902.
  • M. Yessef et al., “Real-time validation of intelligent super twisting sliding mode control for variable-speed DFIG using dSPACE 1104 board,” IEEE Access, vol. 12, pp. 31892–31915, 2024. DOI: 10.1109/ACCESS.2024.3367828.
  • H. Benbouhenni et al., “Active and reactive power vector control using neural-synergetic-super twisting controllers of induction generators for variable-speed contra-rotating wind turbine systems,” Meas. Control, pp. 0, 2024. DOI: 10.1177/00202940231224386.
  • A. Yahdou, D. A. Belhadj, E. Bounadja, and H. Benbouhenni, “Using neural network super-twisting sliding mode to improve power control of a dual-rotor wind turbine system in normal and unbalanced grid fault modes,” Circuit Theory Apps, 2024. DOI: 10.1002/cta.3960.
  • H. Benbouhenni, B. Nicu, and C. Ilhami, “Super-twisting hysteresis controller for multi-rotor wind energy systems,” Int. J. Electronics, pp. 1–20, 2024. DOI: 10.1080/00207217.2024.2312086.
  • Y. Mourad et al., “Experimental validation of feedback PI controllers for multi-rotor wind energy conversion systems.” IEEE Access, vol. 12, pp. 7071–7088, 2024. DOI: 10.1109/ACCESS.2024.3351355.
  • H. Benbouhenni et al., “Application of fractional-order synergetic-proportional integral controller based on PSO algorithm to improve the output power of the wind turbine power system,” Sci. Rep., vol. 14, no. 1, pp. 609, 2024. DOI: 10.1038/s41598-024-51156-x.
  • H. Benbouhenni, B. Nicu, C. Ilhami, I. M. Mohamed, and Y. Mourad, “Direct active and reactive powers control of double-powered asynchronous generators in multi-rotor wind power systems using modified synergetic control,” Energy Rep., vol. 10, pp. 4286–4301, 2023. DOI: 10.1016/j.egyr.2023.10.085.
  • H. Benbouhenni et al., “Enhancement of the power quality of DFIG-based dual-rotor wind turbine systems using fractional order fuzzy controller,” Expert Syst. Appl., vol. 238, no. A, pp. 121695, 2024. DOI: 10.1016/j.eswa.2023.121695.
  • H. Benbouhenni, C. Ilhami, B. Nicu, and A. Emad, “Fractional-order neural control of a DFIG supplied by a two-level PWM inverter for dual-rotor wind turbine system,” Meas. Control, vol. 57, no. 3, pp. 301–318, 2023. DOI: 10.1177/00202940231201375.
  • S. T. Dang, X. M. Dinh, T. D. Kim, H. L. Xuan, and M.-H. Ha, “Adaptive backstepping hierarchical sliding mode control for 3-wheeled mobile robots based on RBF neural networks,” Electronics, vol. 12, no. 11, pp. 2345, 2023. DOI: 10.3390/electronics12112345.
  • J. Zhao et al., “Robust adaptive backstepping motion control of underwater cable-driven parallel mechanism using improved linear model predictive control,” JMSE, vol. 11, no. 6, pp. 1173, 2023. DOI: 10.3390/jmse11061173.
  • S. Khadar et al., “Experimental validation of different control techniques applied to a five-phase open-end winding induction motor,” Energies, vol. 16, no. 14, pp. 5288, 2023. DOI: 10.3390/en16145288.
  • T. H. Nguyen, T. T. Nguyen, K. Minh Le, H. N. Tran, and J. W. Jeon, “An adaptive backstepping sliding-mode control for improving position tracking of a permanent-magnet synchronous motor with a nonlinear disturbance observer,” IEEE Access, vol. 11, pp. 19173–19185, 2023. DOI: 10.1109/ACCESS.2023.3248604.
  • R. Ponarun, R. Karthigaivel, and S. Muthusamy, “A variable wind harvesting based induction generator using variable voltage and variable frequency converter for renewable energy applications,” Energy Sources Part A Recov. Util. Environ. Effects, vol. 44, no. 4, pp. 8427–8444, 2022. DOI: 10.1080/15567036.2022.2121876.
  • A. Palani et al., “A novel design and development of multilevel inverters for parallel operated PMSG-based standalone wind energy conversion systems,” Iran J. Sci. Technol. Trans. Electr. Eng., vol. 48, no. 1, pp. 277–287, 2023. DOI: 10.1007/s40998-023-00661-2.
  • H. Benbouhenni, H. Gasmi, and I. Colak, “Backstepping control for multi-rotor wind power systems,” Majlesi J. Energy Manag., vol. 11, no. 4, pp. 8–15, 2022.
  • N. Debdouche, L. Zarour, H. Benbouhenni, F. Mehazzem, and B. Deffaf, “Robust integral backstepping control microgrid connected photovoltaic System with battery energy storage through multi-functional voltage source inverter using direct power control SVM strategies,” Energy Rep., vol. 10, pp. 565–580, 2023. DOI: 10.1016/j.egyr.2023.07.012.
  • X. Wang, D. Sun, and Z. Q. Zhu, “Resonant-based backstepping direct power control strategy for dfig under both balanced and unbalanced grid conditions,” IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 4821–4830, 2017. DOI: 10.1109/TIA.2017.2700280.
  • Y. El Mourabit et al., “Implementation and validation of backstepping control for PMSG wind turbine using dSPACE controller board,” Energy Rep., vol. 5, pp. 807–821, 2019. DOI: 10.1016/j.egyr.2019.06.015.
  • L. Manai, D. Hakiri, and M. Besbes, “Backstepping control of flying capacitor multilevel inverter-based active power filter,” IET Power Electron., vol. 13, no. 19, pp. 4610–4624, 2020. DOI: 10.1049/iet-pel.2020.0734.
  • C. Chien-Wen and C. Yaote, “Backstepping control of multi-input non-linear systems.” IET Control Theory Appl., vol. 7, no. 14, pp. 1773–1779, 2013. DOI: 10.1049/iet-cta.2012.0529.
  • Y. Liu, F. Li, and B. Sun, “Self-tuning backstepping control with kalman-like filter for high-precision control of automotive electronic throttle,” Electronics, vol. 12, no. 13, pp. 2938, 2023. DOI: 10.3390/electronics12132938.
  • T. Ameid, H. Talhaoui, Y. Azzoug, M. Chebaani, and A. Laidoudi, “Rotor fault detection using hybrid signal processing approach for sensorless backstepping control driven induction motor at low-speed operation,” Asian J. Control, vol. 31, no. 12, pp. e13150, 2021. DOI: 10.1002/2050-7038.13150.
  • H. Chojaa et al., “Enhancement of direct power control by using artificial neural network for a doubly fed induction generator-based WECS: an experimental validation,” Electronics, vol. 11, no. 24, pp. 4106, 2022. DOI: 10.3390/electronics11244106.
  • D. Zellouma, H. Benbouhenni, and Y. Bekakra, “Backstepping control based on a third-order sliding mode controller to regulate the torque and flux of asynchronous motor drive,” Period. Polytech. Elec. Eng. Comp. Sci., vol. 67, no. 1, pp. 10–20, 2023. DOI: 10.3311/PPee.20333.
  • D. Zellouma, Y. Bekakra, and H. Benbouhenni, “Robust synergetic-sliding mode-based-backstepping control of induction motor with MRAS technique,” Energy Rep., vol. 10, pp. 3665–3680, 2023. DOI: 10.1016/j.egyr.2023.10.035.
  • H. Benbouhenni and N. Bizon, “A synergetic sliding mode controller applied to direct field-oriented control of induction generator-based variable speed dual-rotor wind turbines,” Energies, vol. 14, no. 15, pp. 4437, 2021. DOI: 10.3390/en14154437.
  • X. Gong and J. Fei, “Adaptive neural backstepping terminal sliding mode control of a DC-DC buck converter,” Sensors, vol. 23, no. 17, pp. 7450, 2023. DOI: 10.3390/s23177450.
  • R. Afifa, S. Ali, M. Pervaiz, and J. Iqbal, “Adaptive backstepping integral sliding mode control of a MIMO separately excited DC motor,” Robotics, vol. 12, no. 4, pp. 105, 2023. DOI: 10.3390/robotics12040105.
  • D. Liu et al., “Finite-time super twisting disturbance observer-based backstepping control for body-flap hypersonic vehicle,” Mathematics, vol. 11, no. 11, pp. 2460, 2023. DOI: 10.3390/math11112460.
  • F. Echiheb et al., “Robust sliding-Backstepping mode control of a wind system based on the DFIG generator,” Sci. Rep., vol. 12, no. 1, Article ID 11782, 2022. DOI: 10.1038/s41598-022-15960-7.
  • Z. Laihong, Z. Juqian, D. Jingxin, and W. Bangchun, “A fuzzy adaptive backstepping control based on mass observer for trajectory tracking of a quadrotor UAV,” Int. J. Adapt. Control Signal Process., vol. 32, no. 12, pp. 1675–1693, 2018. DOI: 10.1002/acs.2937.
  • A. R. Berra, S. Barkat, and M. Bouzidi, “Virtual flux direct power-backstepping control of 5-level T-type multiterminal VSC-HVDC system,” Int. Trans. Electr. Energ. Syst., vol. 27, no. 9, pp. e2352, 2017. DOI: 10.1002/etep.2352.
  • A. Abdelkader et al., “Robust Lyapunov-based power controllers with integral action for a wind farm,” Electr. Power Compon. Syst., 2024. DOI: 10.1080/15325008.2024.2311880.
  • A. Yahdou, H. Benbouhenni, I. Colak, and N. Bizon, “Application of backstepping control with nonsingular terminal sliding mode surface technique to improve the robustness of stator power control of asynchronous generator-based multi-rotor wind turbine system,” Electr. Power Compon. Syst., 2024. DOI: 10.1080/15325008.2024.2304688.
  • H. Gasmi, H. Benbouhenni, S. Mendaci, and I. Colak, “A new scheme of the fractional-order super twisting algorithm for asynchronous generator-based wind turbine,” Energy Rep., vol. 9, pp. 6311–6327, 2023. DOI: 10.1016/j.egyr.2023.05.267.
  • A. Yahdou, A. Belhadj Djilali, Z. Boudjema, and F. Mehedi, “Improved vector control of a counter-rotating wind turbine system using adaptive backstepping sliding mode,” JESA, vol. 53, no. 5, pp. 645–651, 2020. DOI: 10.18280/jesa.530507.
  • S. Abdeddaim and A. Betka, “Optimal tracking and robust power control of the DFIG wind turbine,” Int. J. Electr. Power Energy Syst., vol. 49, pp. 234–242, 2013. DOI: 10.1016/j.ijepes.2012.12.014.
  • Z. Boudjema, R. Taleb, Y. Djerriri, and A. Yahdou, “A novel direct torque control using second order continuous sliding mode of a doubly fed induction generator for a wind energy conversion system,” Turk. J. Electr. Eng. Comput. Sci., vol. 25, no. 6, pp. 965–975, 2017. DOI: 10.3906/elk-1510-89.
  • C. Pazhanimuthu et al., “A grid-connected solar PV/wind turbine based hybrid energy system using ANFIS controller for hybrid series active power filter to improve the power quality,” Int. Trans. Elect. Energy Syst., 2022. DOI: 10.1155/2022/9374638.
  • S. Kumar Rasappan et al., “A Novel ultra sparse matrix converter as a power transferring device for gearless wind energy conversion systems based on renewable energy applications,” Sustain. Energy Technol. Assess., vol. 50, pp. 101830, 2022. DOI: 10.1016/j.seta.2021.101830.
  • M. Suresh and R. Meenakumari, “An improved genetic algorithm-based optimal sizing of solar photovoltaic/wind turbine generator/diesel generator/battery connected hybrid energy systems for standalone applications,” Int. J. Ambient Energy, vol. 42, no. 10, pp. 1136–1143, 2021. DOI: 10.1080/01430750.2019.1587720.
  • M. Suresh and R. Meenakumari, “Optimum utilization of grid connected hybrid renewable energy sources using hybrid algorithm,” Trans. Inst. Meas. Control, vol. 43, no. 1, pp. 21–33, 2021. DOI: 10.1177/0142331220913740.
  • S. Kadi, K. Imarazene, B. El Madjid, H. Benbouhenni, and E. Abdelkarim, “A direct vector control based on modified SMC theory to control the double-powered induction generator-based variable-speed contra-rotating wind turbine systems,” Energy Rep., vol. 8, pp. 15057–15066, 2022. DOI: 10.1016/j.egyr.2022.11.052.
  • H. Benbouhenni, I. Colak, N. Bizon, A. G. Mazare, and P. Thounthong, “Direct vector control using feedback PI controllers of a DPAG supplied by a two-level PWM inverter for a multi-rotor wind turbine system,” Arab. J. Sci. Eng., vol. 48, no. 11, pp. 15177–15193, 2023. DOI: 10.1007/s13369-023-08035-w.
  • H. Benbouhenni, H. Gasmi, I. Colak, N. Bizon, and P. Thounthong, “Synergetic-PI controller based on genetic algorithm for DPC-PWM strategy of a multi-rotor wind power system,” Sci. Rep., vol. 13, no. 1, pp. 13570, 2023. DOI: 10.1038/s41598-023-40870-7.
  • H. Benbouhenni, N. Bizon, P. Thounthong, I. Colak, and P. Mungporn, “A new integral-synergetic controller for direct reactive and active powers control of a dual-rotor wind system,” Meas. Control, vol. 57, pp. 208–224. 2024. DOI: 10.1177/00202940231195117.
  • M. R. Jovanovic and B. Bamieh, “Architecture induced by distributed backstepping design,” IEEE Trans. Automat. Contr., vol. 52, no. 1, pp. 108–113, 2007. DOI: 10.1109/TAC.2006.886533.
  • Sureshkumar, R and S. Ganeshkumar, S., “Comparative study of proportional integral and backstepping controller for buck converter,” presented at the 2011 International Conference on Emerging Trends in Electrical and Computer Technology, Nagercoil, India, 23–24 Mar. 2011. DOI: 10.1109/ICETECT.2011.5760146.
  • F. Mazouz, S. Belkacem, G. Boukhalfa, and I. Colak, “Backstepping approach based on direct power control of a DFIG in WECS,” presented at the 10th IEEE International Conference on Renewable Energy Research and Applications, Istanbul, Turkey, Sept. 26–29, 2021. DOI: 10.1109/ICRERA52334.2021.9598599.
  • H. Benbouhenni, I. Colak, and N. Bizon, “Application of genetic algorithm and terminal sliding surface to improve the effectiveness of the proportional–integral controller for the direct power control of the induction generator power system,” Eng. Appl. Artif. Intell., vol. 125, pp. 106681, 2023. DOI: 10.1016/j.engappai.2023.106681.
  • H. Benbouhenni and N. Bizon, “Terminal synergetic control for direct active and reactive powers in asynchronous generator-based dual-rotor wind power systems,” Electronics, vol. 10, no. 16, pp. 1880, 2021. DOI: 10.3390/en14154437.
  • T. Li, X. Liu, and H. Yu, “Backstepping nonsingular terminal sliding mode control for PMSM with finite-time disturbance observer,” IEEE Access, vol. 9, pp. 135496–135507, 2021. DOI: 10.1109/ACCESS.2021.3117363.
  • H. Benbouhenni and H. Gasmi, “Comparative study of synergetic controller with super twisting algorithm for rotor side inverter of DFIG,” Int. J. Smart Grid-ijSmartGrid, vol. 6, no. 4, pp. 144–156, 2022. DOI: 10.20508/ijsmartgrid.v6i4.265.g228.
  • B. Habib, H. Gasmi, and I. Colak, “Intelligent control scheme of asynchronous generator-based dual-rotor wind power system under different working conditions,” Majlesi J. Energy Manage., vol. 11, no. 3, pp. 8–15, 2022.
  • H. Ravikiran and M. Tukaram, “Modified super twisting algorithm based sliding mode control for LVRT enhancement of DFIG driven wind system,” Energy Rep., vol. 8, pp. 3600–3613, 2022. DOI: 10.1016/j.egyr.2022.02.235.
  • K. Xiahou, M. S. Li, Y. Liu, and Q. H. Wu, “Sensor fault tolerance enhancement of DFIG-WTs via perturbation observer-based DPC and two-stage Kalman filters,” IEEE Trans. Energy Convers, vol. 33, no. 2, pp. 483–495, 2018. DOI: 10.1109/TEC.2017.2771250.
  • Z. Boudjema, A. Meroufel, Y. Djerriri, and E. Bounadja, “Fuzzy sliding mode control of a doubly fed induction generator for energy conversion,” Carpathian J. Electr. Comput. Eng., vol. 6, no. 2, pp. 7–14, 2013.
  • M. Said et al., “Enhancement of the direct torque control by using artificial neuron network for a doubly fed induction motor,” Intell. Syst. Appl., vol. 13, pp. 1–18, 2022. DOI: 10.1016/j.iswa.2022.200060.
  • Y. Sahri et al., “New intelligent direct power control of DFIG-based wind conversion system by using machine learning under variations of all operating and compensation modes,” Energy Rep., vol. 7, pp. 6394–6412, 2021. DOI: 10.1016/j.egyr.2021.09.075.
  • S. M. Tavakoli, M. A. Pourmina, and M. R. Zolghadri, “Comparison between different DPC methods applied to DFIG wind turbines,” Int. J. Renew. Energy Res., vol. 3, no. 2, pp. 446–452, 2013.
  • F. Amrane, A. Chaiba, B. BadrEddine, and M. Saad, “Design and implementation of high performance field oriented control for grid-connected doubly fed induction generator via hysteresis rotor current controller,” Rev. Roum. Sci. Tech.-Electrotechn. Et Energ, vol. 61, no. 4, pp. 319–324, 2016.
  • A. Yahdou, B. Hemici, and Z. Boudjema, “Second order sliding mode control of a dual-rotor wind turbine system by employing a matrix converter,” J. Electr. Eng., vol. 16, no. 3, pp. 1–11, 2016.
  • I. Yaichi, A. Semmah, P. Wira, and Y. Djeriri, “Super-twisting sliding mode control of a doubly-fed induction generator based on the SVM strategy,” Period. Polytech. Electr. Eng. Comput. Sci., vol. 63, no. 3, pp. 178–190, 2019. DOI: 10.3311/PPee.13726.
  • M. Taoussi et al., “Implementation and validation of hybrid control for a DFIG wind turbine using an FPGA controller board,” Electronics, vol. 10, no. 24, pp. 3154, 2021. DOI: 10.3390/electronics10243154.
  • M. Bouderbala et al., “Experimental validation of predictive current control for DFIG: FPGA implementation,” Electronics, vol. 10, no. 21, pp. 2670, 2021. DOI: 10.3390/electronics10212670.
  • W. Ayrir et al., “Direct torque control improvement of a variable speed DFIG based on a fuzzy inference system,” Math. Comput. Simul., vol. 167, pp. 308–324, 2020. DOI: 10.1016/j.matcom.2018.05.014.
  • Y. Quan, L. Hang, Y. He, and Y. Zhang, “Multi-resonant-based sliding mode control of DFIG-based wind system under unbalanced and harmonic network conditions,” Appl. Sci., vol. 9, no. 6, pp. 1124, 2019. DOI: 10.3390/app9061124.
  • E. Najib et al., “Direct torque control of doubly fed induction motor using three-level NPC inverter,” Prot. Control Mod. Power Syst., vol. 4, no. 17, pp. 1–9, 2019. DOI: 10.1186/s41601-019-0131-7.
  • A. Yahdou, A. Belhadj Djilali, E. Bounadja, and Z. Boudjema, “Power quality improvement through backstepping super-twisting control of a DFIG-based dual rotor wind turbine system under grid voltage drop,” Arab. J. Sci. Eng., 2024. DOI: 10.1007/s13369-023-08699-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.