47
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-Objective Dynamic Economic and Emission Generation Scheduling of Coordinated Power System Considering Renewable Energy Sources and Pumped Storage Hydro Plants via Fuzzy Surrogate-Assisted Coronavirus Herd Immunity Optimization

, &
Received 13 Aug 2023, Accepted 31 Mar 2024, Published online: 24 Apr 2024

References

  • M. Ghasemi, E. Akbari, M. Zand, M. Hadipour, S. Ghavidel and L. Li, “An efficient modified HPSO-TVAC-based dynamic economic dispatch of generating units,” Electr. Power Compon. Syst., vol. 47, no. 19-20, pp. 1826–1840, 2020. DOI: 10.1080/15325008.2020.1731876.
  • V. P. Sakthivel, M. Suman and P. D. Sathya, “Combined economic and emission power dispatch problems through multi-objective squirrel search algorithm,” Appl. Soft Comput., vol. 100, pp. e106950, Mar. 2021. DOI: 10.1016/j.asoc.2020.106950.
  • S. Basak, B. Dey and B. Bhattacharyya, “Uncertainty-based dynamic economic dispatch for diverse load and wind profiles using a novel hybrid algorithm,” Environ. Dev. Sustain., vol. 25, no. 5, pp. 4723–4763, 2023. DOI: 10.1007/s10668-022-02218-5.
  • Y. H. Song and I. K. Yu, “Dynamic load dispatch with voltage security and environmental constraints,” Electr. Power Syst. Res., vol. 43, no. 1, pp. 53–60, 1997. DOI: 10.1016/S0378-7796(97)01160-7.
  • M. A. Abido, “Multiobjective particle swarm optimization for environmental economic dispatch problem,” Electr. Power Syst. Res., vol. 79, no. 7, pp. 1105–1113, 2009. DOI: 10.1016/j.epsr.2009.02.005.
  • L. Wang and C. Singh, “Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm,” Electr. Power Syst. Res., vol. 77, no. 12, pp. 1654–1664, 2007. DOI: 10.1016/j.epsr.2006.11.012.
  • M. Basu, “Dynamic economic emission dispatch using evolutionary programming and fuzzy satisfying method,” Int. J. Emerg. Electr. Power Syst., vol. 8, no. 4, pp. 1–15, 2007. DOI: 10.2202/1553-779X.1146.
  • K. Thenmalar, S. Ramesh and S. Thiruvenkadam, “Opposition based differential evolution algorithm for dynamic economic emission load dispatch (EELD) with emission constraints and valve point effects,” J. Electr. Eng. Technol., vol. 10, no. 4, pp. 1508–1517, 2015. DOI: 10.5370/JEET.2015.10.4.1509.
  • F. Mohammadi and H. Abdi, “Solving dynamic economic emission dispatch problem by random drift particle swarm optimization considering valve-point and spinning reserve constraints,” Majlesi J. Energy Manag., vol. 5, no. 1, pp. 1–13, 2016.
  • N. Pandit, A. Tripathi, S. Tapaswi and M. Pandit, “An improved bacterial foraging algorithm for combined static/dynamic environmental economic dispatch,” Appl. Soft Comput., vol. 12, no. 11, pp. 3500–3513, 2012. DOI: 10.1016/j.asoc.2012.06.011.
  • M. Basu, “Particle swarm optimization based goal-attainment method for dynamic economic emission dispatch,” Electr. Power Compon. Syst., vol. 34, no. 9, pp. 1015–1025, 2006. DOI: 10.1080/15325000600596759.
  • J. S. Alsumait, M. Qasem, J. K. Sykulski and A. K. Al-Othman, “An improved pattern search based algorithm to solve the dynamic economic dispatch problem with valve-point effect,” Energy Convers. Manag., vol. 51, no. 10, pp. 2062–2067, 2010. DOI: 10.1016/j.enconman.2010.02.039.
  • A. M. Elaiw, X. Xia and A. M. Shehata, “Hybrid DE-SQP and hybrid PSO-SQP methods for solving dynamic economic emission dispatch problem with valve-point effects,” Electr. Power Syst. Res., vol. 103, pp. 192–200, 2013. DOI: 10.1016/j.epsr.2013.05.015.
  • Z. Yang, K. Li, Q. Niu, Y. Xue and A. Foley, “A self-learning TLBO based dynamic economic/environmental dispatch considering multiple plug-in electric vehicle loads,” J. Mod. Power Syst. Clean Energy, vol. 2, no. 4, pp. 298–307, 2014. DOI: 10.1007/s40565-014-0087-6.
  • K. Mason, J. Duggan and E. Howley, “Multi-objective dynamic economic emission dispatch using particle swarm optimisation variants,” Neurocomputing, vol. 270, pp. 188–197, 2017. DOI: 10.1016/j.neucom.2017.03.086.
  • S. Qian, H. Wu and G. Xu, “An improved particle swarm optimization with clone selection principle for dynamic economic emission dispatch,” Soft Comput., vol. 24, no. 20, pp. 15249–15271, 2020. Mar DOI: 10.1007/s00500-020-04861-4.
  • V. P. Sakthivel, M. Suman and P. D. Sathya, “Nonconvex economic environmental load dispatch using fuzzy based squirrel search algorithm,” IRECON, vol. 8, no. 2, pp. 61–70, 2020. DOI: 10.15866/irecon.v8i2.18593.
  • Z. Li, D. Zou and Z. Kong, “A harmony search variant and a useful constraint handling method for the dynamic economic emission dispatch problems considering transmission loss,” Eng. Appl. Artif. Intell., vol. 84, pp. 18–40, 2019. Sep DOI: 10.1016/j.engappai.2019.05.005.
  • X. Shen, D. Zou, N. Duan and Q. Zhang, “An efficient fitness-based differential evolution algorithm and a constraint handling technique for dynamic economic emission dispatch,” Energy, vol. 186, pp. e115801, 2019. Nov DOI: 10.1016/j.energy.2019.07.131.
  • M. Suman and V. P. Sakthivel, “Coulomb’s and Franklin’s laws based optimization for nonconvex economic and emission dispatch problems,” Int. Energy J., vol. 20, no. 2, pp. 225–232, 2020. DOI: 10.1007/s42452-020-04017-x.
  • L. L. Li, Z. F. Liu, M. L. Tseng, S. J. Zheng and M. K. Lim, “Improved tunicate swarm algorithm: solving the dynamic economic emission dispatch problems,” Appl. Soft Comput., vol. 108, pp. e107504, Sep. 2021. DOI: 10.1016/j.asoc.2021.107504.
  • M. Basu, “Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II,” Int. J. Electr. Power Energy Syst., vol. 30, no. 2, pp. 140–149, 2008. DOI: 10.1016/j.ijepes.2007.06.009.
  • L. Xuebin, “Study of multi-objective optimization and multi-attribute decision-making for dynamic economic emission dispatch,” Electr. Power Compon. Syst., vol. 37, no. 10, pp. 1133–1148, 2009. DOI: 10.1080/15325000902954037.
  • Z. Zhu, J. Wang and M. H. Baloch, “Dynamic economic emission dispatch using modified NSGA-II,” Int. Trans. Electr. Energ. Syst., vol. 26, no. 12, pp. 2684–2698, 2016. DOI: 10.1002/etep.2228.
  • C. X. Guo, J. P. Zhan and Q. H. Wu, “Dynamic economic emission dispatch based on group search optimizer with multiple producers,” Electr. Power Syst. Res., vol. 86, pp. 8–16, May 2012. DOI: 10.1016/j.epsr.2011.11.015.
  • B. Bahmanifirouzi, E. Farjah and T. Niknam, “Multi-objective stochastic dynamic economic emission dispatch enhancement by fuzzy adaptive modified theta particle swarm optimization,” J. Renew. Sustain. Energy, vol. 4, no. 2, pp. e023105, 2012. DOI: 10.1063/1.3690959.
  • T. Niknam, F. Golestaneh and M. S. Sadeghi, “θ-multiobjective teaching–learning-based optimization for dynamic economic emission dispatch,” IEEE Syst. J., vol. 6, no. 2, pp. 341–352, 2012. Feb DOI: 10.1109/JSYST.2012.2183276.
  • X. Jiang, J. Zhou, H. Wang and Y. Zhang, “Dynamic environmental economic dispatch using multiobjective differential evolution algorithm with expanded double selection and adaptive random restart,” Int. J. Electr. Power Energy Syst., vol. 49, pp. 399–407, 2013. DOI: 10.1002/tee.22933.
  • H. Zhang, D. Yue, X. Xie, S. Hu and S. Weng, “Multi-elite guide hybrid differential evolution with simulated annealing technique for dynamic economic emission dispatch,” Appl. Soft Comput., vol. 34, pp. 312–323, 2015. Sep DOI: 10.1016/j.asoc.2015.05.012.
  • K. Mason, J. Duggan and E. Howley, “A multi-objective neural network trained with differential evolution for dynamic economic emission dispatch,” Int. J. Electr. Power Energy Syst., vol. 100, pp. 201–221, 2018. DOI: 10.1016/j.ijepes.2018.02.021.
  • L. Yan, B. Qu, Y. Zhu, B. Qiao and P. N. Suganthan, “Dynamic economic emission dispatch based on multi-objective pigeon-inspired optimization with double disturbance,” Sci. China Inf. Sci., vol. 62, no. 7, pp. e70210, 2019. DOI: 10.1007/s11432-018-9715-2.
  • B. Lokeshgupta and S. Sivasubramani, “Multi-objective dynamic economic and emission dispatch with demand side management,” Int. J. Electr. Power Energy Syst., vol. 97, pp. 334–343, 2018. DOI: 10.1007/s00202-021-01476-2.
  • P. K. Roy and S. Bhui, “A multi-objective hybrid evolutionary algorithm for dynamic economic emission load dispatch,” Int. Trans. Electr. Energ. Syst., vol. 26, no. 1, pp. 49–78, 2015. DOI: 10.1002/etep.2066.
  • V. P. Sakthivel, M. Suman and P. D. Sathya, “Multi-objective squirrel search algorithm to solve economic environmental power dispatch problems,” Int. Trans. Electr. Energy Syst., vol. 30, pp. e12635, 2020. DOI: 10.1002/2050-7038.12635.
  • J. Aghaei, T. Niknam, R. A. Abarghooee and J. M. Arroyo, “Scenario-based dynamic economic emission dispatch considering load and wind power uncertainties,” Int. J. Electr. Power Energy Syst., vol. 47, pp. 351–367, 2013. DOI: 10.1016/j.ijepes.2012.10.069.
  • B. B. Firouzi, E. Farjah and R. A. Abarghooee, “An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties,” Energy, vol. 50, pp. 232–244, 2013. DOI: 10.1016/j.energy.2012.11.017.
  • F. Hu, K. J. Hughes, D. B. Ingham, L. Ma and M. Pourkashanian, “Dynamic economic and emission dispatch model considering wind power under Energy Market Reform: a case study,” Int. J. Electr. Power Energy Syst., vol. 110, pp. 184–196, 2019. DOI: 10.1016/j.ijepes.2019.03.004.
  • G. Liu, Y. L. Zhu and W. Jiang, “Wind-thermal dynamic economic emission dispatch with a hybrid multi-objective algorithm based on wind speed statistical analysis,” IET Gen. Transm.; Distrib., vol. 12, no. 17, pp. 3972–3984, 2018. DOI: 10.1049/iet-gtd.2018.5364.
  • C. L. Chinnadurrai and T. A. A. Victoire, “Dynamic economic emission dispatch considering wind uncertainty using non-dominated sorting crisscross optimization,” IEEE Access, vol. 8, pp. 94678–94696, 2020. DOI: 10.1109/ACCESS.2020.2995213.
  • B. Y. Qu, J. J. Liang, Y. S. Zhu and P. N. Suganthan, “Solving dynamic economic emission dispatch problem considering wind power by multi-objective differential evolution with ensemble of selection method,” Nat Comput., vol. 18, no. 4, pp. 695–703, 2019. DOI: 10.1007/s11047-016-9598-6.
  • M. E. Alshammari, M. A. M. Ramli and I. M. Mehedi, “An elitist multi-objective particle swarm optimization algorithm for sustainable dynamic economic emission dispatch integrating wind farms,” Sustainability, vol. 12, no. 18, pp. e7253, 2020. DOI: 10.3390/su12187253.
  • Y. Zhang, K. Liu, X. Liao, L. Qin and X. An, “Stochastic dynamic economic emission dispatch with unit commitment problem considering wind power integration,” Int. Trans. Electr. Energ. Syst., vol. 28, no. 1, pp. e2472, 2017. DOI: 10.1002/etep.2472.
  • L. Gang, Z. Yongli and J. Wei, “Dynamic economic emission dispatch with wind power based on improved multiobjective brain storm optimisation algorithm,” IET Renew. Power Gener., vol. 14, no. 13, pp. 2526–2537, 2020. DOI: 10.1049/iet-rpg.2019.1080.
  • M. R. Chen, G. Q. Zeng and K. D. Lu, “Constrained multi-objective population extremal optimization based economic-emission dispatch incorporating renewable energy resources,” Renew. Energy, vol. 143, pp. 277–294, 2019. Dec DOI: 10.1016/j.renene.2019.05.024.
  • G. Mohy-Ud-Din, “Hybrid dynamic economic emission dispatch of thermal, wind, and photovoltaic power using the hybrid backtracking search algorithm with sequential quadratic programming,” J. Renew. Sustain. Energy, vol. 9, no. 1, pp. e015502, 2017. DOI: 10.1063/1.4973715.
  • S. Behera, S. Behera, A. K. Barisal and P. Sahu, “Dynamic economic emission dispatch of thermal-wind-solar system with constriction factor based particle swarm optimization algorithm,” WJE, vol. 18, no. 2, pp. 217–227, 2021. DOI: 10.1108/WJE-07-2020-0327.
  • Z. F. Liu, L. L. Li, Y. W. Liu, J. Q. Liu, H. Y. Li and Q. Shen, “Dynamic economic emission dispatch considering renewable energy generation: a novel multi-objective optimization approach,” Energy, vol. 235, pp. e121407, Nov. 2021. DOI: 10.1016/j.energy.2021.121407.
  • X. Li, W. Wang, H. Wang, J. Wu, X. Fan and Q. Xu, “Dynamic environmental economic dispatch of hybrid renewable energy systems based on tradable green certificates,” Energy, vol. 193, pp. e116699, Feb. 2020. DOI: 10.1016/j.energy.2019.116699.
  • S. Lin, G. Fan, G. Jian and M. Liu, “Stochastic economic dispatch of power system with multiple wind farms and pumped storage hydro stations using approximate dynamic programming,” IET Renew. Power Gener., vol. 14, no. 13, pp. 2507–2516, Sep 2020. DOI: 10.1049/iet-rpg.2019.1282.
  • M. Basu, “Dynamic economic dispatch incorporating renewable energy sources and pumped hydro energy storage,” Soft Comput, vol. 24, no. 7, pp. 4829–4840, 2020. Apr DOI: 0.1007/s00500-019-04237-3. DOI: 10.1007/s00500-019-04237-3.
  • B. Ozkaya, H. T. Kahraman, S. Duman, U. Guvenc and M. Akbel, “Combined heat and power economic emission dispatch using dynamic switched crowding based multi-objective symbiotic organism search algorithm,” Appl. Soft Comput., vol. 151, pp. e111106, 2024. DOI: 10.1016/j.asoc.2023.111106.
  • Z. Li, Q. Wu, H. Li, H. C. Nie and J. Tan, “Distributed low-carbon economic dispatch of integrated power and transportation system,” Appl. Energy, vol. 353, pp. e122134, 2024. DOI: 10.1016/j.apenergy.2023.122134.
  • I. Ahmed, M. Rehan, A. Basit, S. H. Malik, W. Ahmed and K. S. Hong, “Adaptive salp swarm algorithm for sustainable economic and environmental dispatch under renewable energy sources,” Renew. Energy, vol. 223, pp. e119944, 2024. DOI: 10.1016/j.renene.2024.119944.
  • S. SeyedGarmroudi, G. Kayakutlu, M. O. Kayalica and Ü. Çolak, “Improved Pelican optimization algorithm for solving load dispatch problems,” Energy, vol. 289, pp. e129811, 2024. DOI: 10.1016/j.energy.2023.129811.
  • L. Shi, C. Duanmu, F. Wu, S. He and K. Y. Lee, “Optimal allocation of energy storage capacity for hydro-wind-solar multi-energy renewable energy system with nested multiple time scales,” J. Clean. Prod, vol. 446, pp. e141357, 2024. DOI: 10.1016/j.jclepro.2024.141357.
  • M. A. Al-Betar, Z. A. A. Alyasseri, M. A. Awadallah and I. A. Doush, “Coronavirus herd immunity optimizer (CHIO),” Neural Comput. Appl., vol. 33, no. 10, pp. 5011–5042, May 2021. DOI: 10.1007/s00521-020-05296-6.
  • A. Naderipour, A. Abdullah, M. H. Marzbali and S. A. Nowdeh, “An improved coronavirus herd immunity optimizer algorithm for network reconfiguration based on fuzzy multi-criteria approach,” Expert Syst. Appl., vol. 187, pp. e115914, Sep. 2021. DOI: 10.1016/j.eswa.2021.115914.
  • L. M. Dalbah, M. A. Al-Betar, M. A. Awadallah and R. A. Zitar, “A modified corona virus herd immunity optimizer for capacitated vehicle routing problem,” J King Saud Univ. Comput. Inf. Sci., vol. 34, no. 8, pp. 4782–4795, Sep 2022. DOI: 10.1016/j.jksuci.2021.06.013.
  • C. Kumar, D. M. Mary and T. Gunasekar, “MOCHIO: a novel Multi-Objective Coronavirus Herd Immunity Optimization algorithm for solving brushless direct current wheel motor design optimization problem,” Automatika, vol. 63, no. 1, pp. 149–170, 2022. DOI: 10.1080/00051144.2021.2014035.
  • S. N. Makhadmeh, et al., “A modified coronavirus herd immunity optimizer for the power scheduling problem,” Mathematics, vol. 10, no. 3, pp. e315, 2022. Jan. DOI: 10.3390/math10030315.
  • N. J. Singh, J. S. Dhillon and D. P. Kothari, “Surrogate worth trade-off method for multiobjective thermal power load dispatch,” Energy, vol. 138, pp. 1112–1123, 2017. DOI: 10.1016/j.energy.2017.07.063.
  • B. Qiao, J. Liu and X. Hao, “A multi-objective differential evolution algorithm and a constraint handling mechanism based on variables proportion for dynamic economic emission dispatch problems,” Appl. Soft Comput., vol. 108, no. 9, pp. e107419, 2021. DOI: 10.1016/j.asoc.2021.107419.
  • V. P. Sakthivel, K. Thirumal and P. D. Sathya, “Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization,” Renew. Energy, vol. 191, no. 5, pp. 459–492, 2022. DOI: 10.1016/j.renene.2022.04.050.
  • Y. W. Leung and Y. Wang, “U-measure: a quality measure for multiobjective programming,” in IEEE Transactions on Systems,” IEEE Trans. Syst. Man Cybern. Part A Syst. Humans, vol. 33, pp. 337–343, May 2003. DOI: 10.1109/TSMCA.2003.817059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.