29
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Integrated Load–Source Side Management for Techno-Economic-Environmental Performance Improvement of the Hybrid Renewable Energy System for Rural Electrification

ORCID Icon, , &
Received 31 May 2023, Accepted 07 Apr 2024, Published online: 03 May 2024

References

  • S. Rajanna and R. P. Saini, “Development of optimal integrated renewable energy model with battery storage for a remote Indian area,” Energy, vol. 111, pp. 803–817, 2016. DOI: 10.1016/j.energy.2016.06.005.
  • CEA. “All India Installed Capacity (in MW) of Power Stations,” Cent Electricity Authority, Ministry of Power, 2020. Available: http://www.cea.nic.in/reports/monthly/installedcapacity2016/installed_capacity-03.pdf. Accessed Jan. 02, 2022.
  • GOI. “Power sector at a glance all India,” Government of India, Ministry of Power, 2020. Available: https://powermin.nic.in/en/content/power-sector-glance-all-india. Accessed Jan. 02, 2022.
  • N. Ramchandran, R. Pai and A. K. S. Parihar, “Feasibility assessment of Anchor-Business Community model for off-grid rural electrification in India,” Renewable Energy, vol. 97, pp. 197–209, 2016. DOI: 10.1016/j.renene.2016.05.036.
  • M. Petrollese and D. Cocco, “Techno-economic assessment of hybrid CSP-biogas power plants,” Renewable Energy, vol. 155, pp. 420–431, 2020. DOI: 10.1016/j.renene.2020.03.106.
  • S. Sanajaoba and E. Fernandez, “Maiden application of Cuckoo Search algorithm for optimal sizing of a remote hybrid renewable energy system,” Renewable Energy, vol. 96, pp. 1–10, 2016. DOI: 10.1016/j.renene.2016.04.069.
  • D. Kanakadhurga and N. Prabaharan, “Demand side management in microgrid: a critical review of key issues and recent trends,” Renewable Sustainable Energy Rev., vol. 156, p. 111915, 2022. DOI: 10.1016/j.rser.2021.111915.
  • S. C. Breukers, E. Heiskanen, B. Brohmann, R. M. Mourik and C. F. J. Feenstra, “Connecting research to practice to improve energy demand-side management (DSM),” Energy, vol. 36, no. 4, pp. 2176–2185, 2011. DOI: 10.1016/j.energy.2010.06.027.
  • J. Shen, C. Jiang, Y. Liu and J. Qian, “A microgrid energy management system with demand response for providing grid peak shaving,” Electric Power Compon. Syst., vol. 44, no. 8, pp. 843–852, 2016. DOI: 10.1080/15325008.2016.1138344.
  • J. Wang, A. Raza, T. Hong, A. C. Sullberg, F. de Leon and Q. Huang, “Analysis of energy savings of CVR including refrigeration loads in distribution system,” IEEE Trans. Power Deliv., vol. 33, no. 1, pp. 158–168, 2018. DOI: 10.1109/TPWRD.2017.2710147.
  • F. Li, H. Guo1, Z. Jing, Z. Wang and X. Wang, “Peak and valley regulation of distribution network with electric vehicle,” J. Eng., vol. 2019, no. 16, pp. 2488–2492, 2018. DOI: 10.1049/joe.2018.8540.
  • P. Sanjeev, N. P. Padhy and P. Agarwal, “Peak energy management using renewable integrated DC microgrid,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4906–4917, 2018. DOI: 10.1109/TSG.2017.2675917.
  • C. Perfumo, E. Kofman, J. H. Braslavsky and J. K. Ward, “Load management: model-based control of aggregate power for populations of thermostatically controlled loads,” Energy Conv. Manag., vol. 55, pp. 36–48, 2012. DOI: 10.1016/j.enconman.2011.10.019.
  • Z. Taylor, et al., “Customer-side SCADA-assisted large battery operation optimization for distribution feeder peak load shaving,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 992–1004, 2019. DOI: 10.1109/TSG.2017.2757007.
  • W. E. Elamin and M. F. Shaaban, “New real-time demand-side management approach for energy management systems,” IET Smart Grid, vol. 2, no. 2, pp. 183–191, 2019. DOI: 10.1049/iet-stg.2018.0033.
  • M. Ghahramani, S. Nojavan, K. Zare and B. Mohammadi-Ivatloo, “Chapter 7—Application of Load Shifting Programs in Next Day Operation of Distribution Networks,” Operation of Distributed Energy Resources in Smart Distribution Networks, Kazem Zare, Sayyad Nojavan, Eds. Tabriz, Iran: University of Tabriz, 2018, pp. 161–177. DOI: 10.1016/B978-0-12-814891-4.00007-2.
  • V. K. Prajapati and V. Mahajan, “Demand response based congestion management of power system with uncertain renewable resources,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 103–116, 2022. DOI: 10.1080/01430750.2019.1630307.
  • H. Huang, Y. Cai, H. Xu and H. Yu, “A multiagent minority-game-based demand-response management of smart buildings toward peak load reduction,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 36, no. 4, pp. 573–585, 2017. DOI: 10.1109/TCAD.2016.2571847.
  • L. Martirano, et al., “Demand side management in microgrids for load control in nearly zero energy buildings,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 1769–1779, 2017. DOI: 10.1109/TIA.2017.2672918.
  • S. Rajanna and R. P. Saini, “Employing demand side management for selection of suitable scenario-wise isolated integrated renewal energy models in an Indian remote rural area,” Renewable Energy, vol. 99, pp. 1161–1180, 2016. DOI: 10.1016/j.renene.2016.08.024.
  • G. R. Aghajani, H. A. Shayanfar and H. Shayeghi, “Demand side management in a smart micro-grid in the presence of renewable generation and demand response,” Energy, vol. 126, pp. 622–637, 2017. DOI: 10.1016/j.energy.2017.03.051.
  • A. Chauhan and R. P. Saini, “Techno-economic optimization based approach for energy management of a stand-alone integrated renewable energy system for remote areas of India,” Energy, vol. 94, pp. 138–156, 2016. DOI: 10.1016/j.energy.2015.10.136.
  • J. Vishnupriyan and P. S. Manoharan, “Demand side management approach to rural electrification of different climate zones in Indian state of Tamil Nadu,” Energy, vol. 138, pp. 799–815, 2017. DOI: 10.1016/j.energy.2017.07.140.
  • R. Kallel, G. Boukettaya and L. Krichen, “Demand side management of household appliances in stand-alone hybrid photovoltaic system,” Renewable Energy, vol. 81, pp. 123–135, 2015. DOI: 10.1016/j.renene.2015.03.024.
  • L. Olatomiwa, S. Mekhilef, A. S. N. Huda and O. S. Ohunakin, “Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria,” Renewable Energy, vol. 83, pp. 435–446, 2015. DOI: 10.1016/j.renene.2015.04.057.
  • L. M. Halabi, S. Mekhilef, L. Olatomiwa and J. Hazelton, “Performance analysis of hybrid PV/diesel/battery system using HOMER: a case study Sabah, Malaysia,” Energy Conv. Manag., vol. 144, pp. 322–339, 2017. DOI: 10.1016/j.enconman.2017.04.070.
  • B. K. Das and F. Zaman, “Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: effects of dispatch strategies, batteries, and generator selection,” Energy, vol. 169, pp. 263–276, 2019. DOI: 10.1016/j.energy.2018.12.014.
  • S. A. Shezan, K. N. Hasan, A. Rahman, M. Datta and U. Datta, “Selection of appropriate dispatch strategies for effective planning and operation of a microgrid,” Energies, vol. 14, no. 21, p. 7217, 2021. DOI: 10.3390/en14217217.
  • A. S. Aziz, M. F. N. Tajuddin, M. R. Adzman, M. A. M. Ramli and S. Mekhilef, “Energy management and optimization of a PV/diesel/battery hybrid energy system using a combined dispatch strategy,” Sustainability, vol. 11, no. 3, p. 683, 2019. DOI: 10.3390/su11030683.
  • M. Fatin Ishraque, S. A. Shezan, M. M. Ali and M. M. Rashid, “Optimization of load dispatch strategies for an islanded microgrid connected with renewable energy sources,” Appl. Energy, vol. 292, p. 116879, 2021. DOI: 10.1016/j.apenergy.2021.116879.
  • M. Ramesh and R. P. Saini, “Dispatch strategies based performance analysis of a hybrid renewable energy system for a remote rural area in India,” J. Cleaner Prod., vol. 259, p. 120697, 2020. DOI: 10.1016/j.jclepro.2020.120697.
  • S. Upadhyay and M. P. Sharma, “Selection of a suitable energy management strategy for a hybrid energy system in a remote rural area of India,” Energy, vol. 94, pp. 352–366, 2016. DOI: 10.1016/j.energy.2015.10.134.
  • M. Ramesh and R. P. Saini, “Demand side management based techno-economic performance analysis for a stand-alone hybrid renewable energy system of India,” Energy Sources, Part A, vol. 43, pp. 1–29, 2021. DOI: 10.1080/15567036.2020.1851820.
  • A. Faramarzi, M. Heidarinejad, S. Mirjalili and A. H. Gandomi, “Marine predators algorithm: a nature-inspired metaheuristic,” Expert Syst. Appl., vol. 152, no. 2020, p. 113377, 2020. DOI: 10.1016/j.eswa.2020.113377.
  • NASA's Surface Solar Energy Data Set. http://eosweb.larc.nasa.gov/sse/. Accessed Jan. 2022.
  • A. Chauhan and R. P. Saini, “Discrete harmony search based size optimization of Integrated Renewable Energy System for remote rural areas of Uttarakhand state in India,” Renewable Energy, vol. 94, pp. 587–604, 2016. DOI: 10.1016/j.renene.2016.03.079.
  • S. Singh, M. Singh and S. Chandra, “Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system,” Energy Conv. Manag., vol. 128, pp. 178–190, 2016. DOI: 10.1016/j.enconman.2016.09.046.
  • F. Ali, M. Ahmar, Y. Jiang and M. Alahmad, “A techno-economic assessment of hybrid energy systems in rural Pakistan,” Energy, vol. 215, no. Part A, p. 119103, 2021. DOI: 10.1016/j.energy.2020.119103.
  • F. A. Khan, N. Pal and S. H. Saeed, “Optimization and sizing of SPV/Wind hybrid renewable energy system: a techno-economic and social perspective,” Energy, vol. 233, p. 121114, 2021. DOI: 10.1016/j.energy.2021.121114.
  • T. Adefarati, G. D. Obikoya, A. K. Onaolapo and A. Njepu, “Design and analysis of a photovoltaic-battery-methanol-diesel power system,” Int. Trans. Electr. Energy Syst., vol. 31, no. 3, pp. 1–24, 2021. DOI: 10.1002/2050-7038.12800.
  • V. Suresh, M. Muralidhar and R. Kiranmayi, “Modelling and optimization of an off-grid hybrid renewable energy system for electrification in a rural areas,” Energy Rep., vol. 6, pp. 594–604, 2020. DOI: 10.1016/j.egyr.2020.01.013.
  • P. K. Kushwaha and C. Bhattacharjee, “Integrated techno-economic-enviro-socio design of the hybrid renewable energy system with suitable dispatch strategy for domestic and telecommunication load across India,” J. Energy Storage, vol. 55, no. Part A, p. 105340, 2022. DOI: 10.1016/j.est.2022.105340.
  • A. A. Z. Diab, H. M. Sultan and O. N. Kuznetsov, “Optimal sizing of hybrid solar/wind/hydroelectric pumped storage energy system in Egypt based on different meta-heuristic techniques,” Environ. Sci. Pollut. Res. Int., vol. 27, no. 26, pp. 32318–32340, 2020. DOI: 10.1007/s11356-019-06566-0.
  • Y. Kemmoku, K. Ishikawa, S. Nakagawa, T. Kawamoto and T. Sakakibara, “Life cycle CO2 emissions of a photovoltaic/wind/diesel generating system,” Electr. Eng. Japan, vol. 138, no. 2, pp. 14–23, 2002. DOI: 10.1002/eej.1115.
  • E. Emilsson and L. Dahllof, 2019. Status 2019 on energy use, CO2 emissions, use of metals, products environmental footprint, and recycling. Report number C 444, IVL Swedish Environmental Research Institute 2019, ISBN 978-91-7883-112-8.
  • Huawei Technologies Co. Ltd., 2020. Product carbon footprint report. Report number SYBH (G-L) 07251691-06, Reliability Laboratory of Huawei Technologies Co. Ltd.
  • Y. Sawle, S. C. Gupta and A. K. Bohre, “Socio-techno-economic design of hybrid renewable energy system using optimization techniques,” Renewable Energy, vol. 119, pp. 459–472, 2018. DOI: 10.1016/j.renene.2017.11.058.
  • D. Emad, M. A. El-Hameed and A. A. El-Fergany, “Optimal techno-economic design of hybrid PV/wind system comprising battery energy storage: case study for a remote area,” Energy Conv. Manag., vol. 249, p. 114847, 2021. DOI: 10.1016/j.enconman.2021.114847.
  • P. K. Kushwaha, P. Ray and C. Bhattacharjee, “Optimal sizing of a hybrid renewable energy system: a sociotechno-economic-environmental perspective,” ASME. J. Sol. Energy Eng., vol. 145, no. 3, p. 031003, 2022. DOI: 10.1115/1.4055196.
  • A. Toopshekan, H. Yousefi and F. R. Astaraei, “Technical, economic, and performance analysis of a hybrid energy system using a novel dispatch strategy,” Energy, vol. 213, p. 118850, 2020. DOI: 10.1016/j.energy.2020.118850.
  • P. K. Kushwaha and C. Bhattacharjee, “Integrated techno -economic-environmental design of off-grid microgrid model for rural power supply in India,” J. Inf. Optim. Sci., vol. 43, no. 1, pp. 37–54, 2022. DOI: 10.1080/02522667.2022.2032557.
  • S. A. Memon, D. S. Upadhyay and R. N. Patel, “Optimal configuration of solar and wind-based hybrid renewable energy system with and without energy storage including environmental and social criteria: a case study,” J. Energy Storage, vol. 44, no. Part B, p. 103446, 2021. DOI: 10.1016/j.est.2021.103446.
  • P. K. Kushwaha and C. Bhattacharjee, “An extensive review of the configurations, modeling, storage technologies, design parameters, sizing methodologies, energy management, system control, and sensitivity analysis aspects of hybrid renewable energy systems,” Electric Power Compon. Syst., vol. 51, no. 20, pp. 2603–2642, 2023. DOI: 10.1080/15325008.2023.2210556.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.