48
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bibliometric Analysis of Microgrid Control Strategy from 2007 to 2022 Based on CiteSpace

, , , &
Received 20 Sep 2023, Accepted 07 Apr 2024, Published online: 26 Apr 2024

References

  • X. Yu and Y. Geng, “Complementary configuration research of new combined cooling, heating, and power system driven by renewable energy under energy management modes,” Energy Technol., vol. 7, no. 10, p. 1900409, 2019. DOI: 10.1002/ente.201900409.
  • L. Zhu, et al., “A novel consequent-pole magnetic lead screw and its 3-D analytical model with experimental verification for wave energy conversion,” IEEE Trans. Energy Convers., pp. 1–13, 2024. DOI: 10.1109/TEC.2023.3331008.
  • F. R. Badal, et al., “A survey on control issues in renewable energy integration and microgrid,” Prot. Control Mod. Power Syst., vol. 4, no. 1, pp. 1–27, 2019. DOI: 10.1186/s41601-019-0122-8.
  • A. Dagar, P. Gupta and V. Niranjan, “Microgrid protection: A comprehensive review,” Renewable Sustainable Energy Rev., vol. 149, p. 111401, 2021. DOI: 10.1016/j.rser.2021.
  • K. Peddakapu, et al., “Stabilization of frequency in multi-microgrid system using barnacle mating optimizer-based cascade controllers,” Sustainable Energy Technol. Assess., vol. 54, p. 102823, 2022. DOI: 10.1016/j.seta.2022.102823.
  • E. C. Pillco, L. F. C. Alberto and R. V. de Oliveira, “Time scale stability analysis of a Hopf bifurcation in a wind-diesel hybrid microgrid,” IET Renewable Power Gener., vol. 14, no. 9, pp. 1491–1501, 2020. DOI: 10.1049/iet-rpg.2019.1193.
  • M. Dashtdar, et al., “Improving the sharing of active and reactive power of the islanded microgrid based on load voltage control,” Smart Sci., vol. 10, no. 2, pp. 142–157, 2022. DOI: 10.1080/23080477.2021.2012010.
  • S. Marchand, et al., “Microgrid systems: Towards a technical performance assessment frame,” Energies, vol. 14, no. 8, p. 2161, 2021. DOI: 10.3390/en14082161.
  • B. Sahoo, S. K. Routray and P. K. Rout, “AC, DC, and hybrid control strategies for smart microgrid application: A review,” Int. Trans. Electr. Energy Syst., vol. 31, no. 1, pp. 53, 2021. DOI: 10.1002/2050-7038.12683.
  • S. K. Sahoo, A. K. Sinha and N. K. Kishore, “Control techniques in AC, DC, and hybrid AC–DC microgrid: A review,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 6, no. 2, pp. 738–759, 2018. DOI: 10.1109/JESTPE.2017.2786588.
  • Z. A. Arfeen, et al., “Control of distributed generation systems for microgrid applications: A technological review,” Int. Trans. Electr. Energy Syst., vol. 29, no. 9, pp. 26, 2019. DOI: 10.1002/2050-7038.12072.
  • B. Arbab-Zavar, et al., “Smart inverters for microgrid applications: A review,” Energies, vol. 12, no. 5, p. 840, 2019. DOI: 10.3390/en12050840.
  • B. Adineh, et al., “Review of harmonic mitigation methods in microgrid: From a hierarchical control perspective,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, no. 3, pp. 3044–3060, 2021. DOI: 10.1109/JESTPE.2020.3001971.
  • S. B. Wali, et al., “Grid-connected lithium-ion battery energy storage system: A bibliometric analysis for emerging future directions,” J. Cleaner Prod., vol. 334, p. 130272, 2022. DOI: 10.1016/j.jclepro.2021.
  • Y. Geng, et al., “Progress and framework of clean energy production: Bibliometric analysis from 2002 to 2022,” Energy Strategy Rev., vol. 52, p. 101270, 2024. DOI: 10.1016/j.esr.2023.
  • X. W. Su, X. Li and Y. X. Kang, “A bibliometric analysis of research on intangible cultural heritage using CiteSpace,” SAGE Open, vol. 9, no. 2, p. 215824401984011, 2019. DOI: 10.1177/2158244019840119.
  • X. Ding and Z. Yang, “Knowledge mapping of platform research: A visual analysis using VOSviewer and CiteSpace,” Electron. Commer. Res., vol. 22, no. 3, pp. 787–809, 2022. DOI: 10.1007/s10660-020-09410-7.
  • S. W. Phoong, S. Y. Phoong and S. L. Khek, “Systematic literature review with bibliometric analysis on markov switching model: Methods and applications,” SAGE Open, vol. 12, no. 2, p. 215824402210930, 2022. DOI: 10.1177/21582440221093062.
  • W. W. Pan, L. R. Jian and T. Liu, “Grey system theory trends from 1991 to 2018: A bibliometric analysis and visualization,” Scientometrics, vol. 121, no. 3, pp. 1407–1434, 2019. DOI: 10.1007/s11192-019-03256-z.
  • Y. Q. Geng and M. Maimaituerxun, “Research progress of green marketing in sustainable consumption based on CiteSpace analysis,” SAGE Open, vol. 12, no. 3, p. 215824402211198, 2022. DOI: 10.1177/21582440221119835.
  • Wu J, Wu X Y, Zhang J W, “Development trend and frontier of stormwater management (1980-2019): A bibliometric overview based on CiteSpace,” Water, Vol. 11, no. 9, p.1908, 2019. DOI: 10.3390/w11091908.
  • Y. Geng, et al., “Bibliometric analysis of sustainable tourism using CiteSpace,” Technol. Forecasting Soc. Change, vol. 202, p. 123310, 2024. DOI: 10.1016/j.techfore.2024.123310.
  • Q. Ping, J. G. He and C. M. Chen, “How many ways to use citespace? A study of user interactive events over 14 months,” J. Assoc. Inf. Sci. Technol., vol. 68, no. 5, pp. 1234–1256, 2017. DOI: 10.1002/asi.23770.
  • J. M. Guerrero, et al., “Hierarchical control of droop-controlled AC and DC microgrids—A general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158–172, 2011. DOI: 10.1109/TIE.2010.2066534.
  • Y. W. Li and C.-N. Kao, “An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2977–2988, 2009. DOI: 10.1109/TPEL.2009.2022828.
  • J. M. Guerrero, et al., “Decentralized control for parallel operation of distributed generation inverters using resistive output impedance,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 994–1004, 2007. DOI: 10.1109/TIE.2007.892621.
  • M. S. Mahmoud, M. Saif Ur Rahman and F. M. A.l.‐Sunni, “Review of microgrid architectures – A system of systems perspective,” IET Renewable Power Gener., vol. 9, no. 8, pp. 1064–1078, 2015. DOI: 10.1049/iet-rpg.2014.0171.
  • P. Basak, et al., “A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid,” Renewable Sustainable Energy Rev., vol. 16, no. 8, pp. 5545–5556, 2012. DOI: 10.1016/j.rser.2012.05.043.
  • L. Meng, et al., “Review on control of DC microgrids and multiple microgrid clusters,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 5, no. 3, pp. 928–948, 2017. DOI: 10.1109/JESTPE.2017.2690219.
  • Y. Han, et al., “MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: A comprehensive overview,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6488–6508, 2018. DOI: 10.1109/TPEL.2017.2761438.
  • J. Liu, et al., “Enhanced virtual synchronous generator control for parallel inverters in microgrids,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2268–2277, 2017. DOI: 10.1109/TSG.2016.2521405.
  • H. Zhang, et al., “Notice of removal: Distributed adaptive virtual impedance control for accurate reactive power sharing based on consensus control in microgrids,” IEEE Trans. Smart Grid, vol. 8, no. 4, pp. 1749–1761, 2017. DOI: 10.1109/TSG.2015.2506760.
  • Y. Fan, G. Hu and M. Egerstedt, “Distributed reactive power sharing control for microgrids with event-triggered communication,” IEEE Trans. Contr. Syst. Technol., vol. 25, no. 1, pp. 118–128, 2017. DOI: 10.1109/TCST.2016.2552982.
  • W. Wu, et al., “A virtual inertia control strategy for DC microgrids analogized with virtual synchronous machines,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 6005–6016, 2017. DOI: 10.1109/TIE.2016.2645898.
  • X. Wu, C. Shen and R. Iravani, “A distributed, cooperative frequency and voltage control for microgrids,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 2764–2776, 2018. DOI: 10.1109/TSG.2016.2619486.
  • S. Hajiaghasi, A. Salemnia and M. Hamzeh, “Hybrid energy storage system for microgrids applications: A review,” J. Energy Storage, vol. 21, pp. 543–570, 2019. DOI: 10.1016/j.est.2018.12.017.
  • Q. Xu, et al., “A decentralized dynamic power sharing strategy for hybrid energy storage system in autonomous DC microgrid,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5930–5941, 2017. DOI: 10.1109/TIE.2016.2608880.
  • Y. Zhou, et al., “Frequency deviation-free compound control strategy for seamless mode transfer in microgrids based on VSG,” Front. Energy Res., vol. 10, p. 945132, 2022. DOI: 10.3389/fenrg.2022.945132.
  • M. R. Ghodsi, A. Tavakoli and A. Samanfar, “Microgrid stability improvement using a deep neural network controller based VSG,” Int. Trans. Electr. Energy Syst., vol. 2022, pp. 1–17, 2022. DOI: 10.1155/2022/7539173.
  • L. Zhang, et al., “Power‐frequency oscillation suppression algorithm for AC microgrid with multiple virtual synchronous generators based on fuzzy inference system,” IET Renewable Power Gen., vol. 16, no. 8, pp. 1589–1601, 2022. DOI: 10.1049/rpg2.12461.
  • K. Ahmed, et al., “Voltage stability and power sharing control of distributed generation units in DC microgrids,” Energies, vol. 16, no. 20, p. 7038, 2023. DOI: 10.3390/en1620.
  • L. Xing, et al., “Distributed secondary control of DC microgrid via the averaging of virtual current derivatives,” IEEE Trans. Ind. Electron., vol. 71, no. 3, pp. 2914–2923, 2024. DOI: 10.1109/TIE.2023.3269470.
  • M. Moradi, et al., “Discrete-time distributed secondary control of DC microgrids with communication delays,” Electr. Power Syst. Res., vol. 226, p. 109935, 2024. DOI: 10.1016/j.epsr.2023.
  • L. Berger, A. D. Henry and G. Pivo, “Role of city collaboration networks in the acceleration and attenuation of integrated water management,” Water Policy, vol. 23, no. 2, pp. 222–238, 2021. DOI: 10.2166/wp.2021.223.
  • S. Zhang, et al., “The impact of international relations patterns on China’s energy security supply, demand, and sustainable development: An exploration of oil demand and sustainability goals,” Sustainability, vol. 15, no. 17, p. 12801, 2023. DOI: 10.3390/su1517.
  • A. Ali, et al., “Overview of current microgrid policies, incentives and barriers in the European Union, United States and China,” Sustainability, vol. 9, no. 7, p. 1146, 2017. DOI: 10.3390/su907.
  • Q. Liu, et al., “China’s energy revolution strategy into 2030,” Resour. Conserv. Recycl., vol. 128, pp. 78–89, 2018. DOI: 10.1016/j.resconrec.2017.09.028.
  • E. Ryland, “Danish wind power policy: Domestic and international forces,” Environ. Polit., vol. 19, no. 1, pp. 80–85, 2010. DOI: 10.1080/09644010903396093.
  • A. Berg, J. Lukkarinen and K. Ollikka, “Sticky’ policies—Three country cases on long-term commitment and rooting of RE policy goals,” Energies, vol. 13, no. 6, p. 1351, 2020. DOI: 10.3390/en1306.
  • F. Guo, et al., “Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids,” IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4355–4364, 2015. DOI: 10.1109/TIE.2014.2379211.
  • X. Li, et al., “Distributed dynamic event-triggered power management strategy for global economic operation in high-power hybrid AC/DC microgrids,” IEEE Trans. Sustainable Energy, vol. 13, no. 3, pp. 1830–1842, 2022. DOI: 10.1109/TSTE.2022.3172703.
  • J. Lu, et al., “Distributed dynamic event-triggered control for voltage restoration and current sharing in DC microgrids,” IEEE Trans. Sustainable Energy, vol. 13, no. 1, pp. 619–628, 2022. DOI: 10.1109/TSTE.2021.3123372.
  • L. C. Freeman, “Centrality in social networks conceptual clarification,” Soc. Networks, vol. 1, no. 3, pp. 215–239, 1978. DOI: 10.1016/0378-8733(78)90021-7.
  • Z. Ullah, et al., “Advanced energy management strategy for microgrid using real-time monitoring interface,” J. Energy Storage, vol. 52, p. 104814, 2022. DOI: 10.1016/j.est.2022.
  • U. B. Tayab, et al., “A review of droop control techniques for microgrid,” Renewable Sustainable Energy Rev., vol. 76, pp. 717–727, 2017. DOI: 10.1016/j.rser.2017.03.028.
  • T. Jumani, et al., “Optimal power flow controller for grid-connected microgrids using grasshopper optimization algorithm,” Electronics, vol. 8, no. 1, p. 111, 2019. DOI: 10.3390/electronics8010.
  • Y. Peng, et al., “Modeling and stability analysis of inverter-based microgrid under harmonic conditions,” IEEE Trans. Smart Grid, vol. 11, no. 2, pp. 1330–1342, 2020. DOI: 10.1109/TSG.2019.2936041.
  • M. D. Pham and H. H. Lee, “Coordinated virtual resistance and capacitance control scheme for accurate reactive power sharing and selective harmonic compensation in islanded microgrid,” IET Gener. Transm. Distrib., vol. 14, no. 22, pp. 5104–5113, 2020. DOI: 10.1049/iet-gtd.2020.0581.
  • B. Modu, et al., “DC-based microgrid: Topologies, control schemes, and implementations,” Alexandria Eng. J., vol. 70, pp. 61–92, 2023. DOI: 10.1016/j.aej.2023.02.021.
  • M. Mishra, et al., “A systematic review on DC-microgrid protection and grounding techniques: Issues, challenges and future perspective,” Appl. Energy, vol. 313, pp. 118810, 2022. DOI: 10.1016/j.apenergy.2022.
  • A. G. Rameshrao, E. Koley and S. Ghosh, “A packet-loss resilient protection scheme for hybrid microgrids based on Markov chain model and spline interpolation,” Sustainable Energy, Grids Networks, vol. 35, p. 101121, 2023. DOI: 10.1016/j.segan.2023.
  • H. Yan, et al., “Adaptive event-triggered predictive control for finite time microgrid,” IEEE Trans. Circuits Syst. I, vol. 67, no. 3, pp. 1035–1044, 2020. DOI: 10.1109/TCSI.2019.2953958.
  • Y. Ma, et al., “Decentralized and coordinated scheduling model of interconnected multi-microgrid based on virtual energy storage,” Int. J. Electr. Power Energy Syst., vol. 148, p. 108990, 2023. DOI: 10.1016/j.ijepes.2023.
  • X. Jin, et al., “Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system,” Appl. Energy, vol. 194, pp. 386–398, 2017. DOI: 10.1016/j.apenergy.2016.07.080.
  • C. Wang, et al., “Optimal control of source–load–storage energy in DC microgrid based on the virtual energy storage system,” Energy Rep., vol. 9, pp. 621–630, 2023. DOI: 10.1016/j.egyr.2022.12.002.
  • P. S. Skardal and A. Arenas, “Control of coupled oscillator networks with application to microgrid technologies,” Sci. Adv., vol. 1, no. 7, p. e1500339, 2015. DOI: 10.1126/sciadv.1500339.
  • Y. Geng, et al., “Temporal-spatial measurement and prediction between air environment and inbound tourism: Case of China,” J. Cleaner Prod., vol. 287, pp. 125486, 2021. DOI: 10.1016/j.jclepro.2020.
  • M. Keshavarz-Ghorabaee, Y. Geng and F. Huang, “Coupling coordination between higher education and environmental governance: Evidence of western China,” Plos One, vol. 17, no. 8, p. e0271994, 2022. DOI: 10.1371/journal.pone.0271994.
  • Y. Geng and H. Zhang, “Coordination assessment of environment and urbanization: Hunan case,” Environ. Monit. Assess., vol. 192, no. 10, p. 637, 2020. DOI: 10.1007/s10661-020-08598-3.
  • U. G. Onu, A. C. Zambroni de Souza and B. D. Bonatto, “Drivers of microgrid projects in developed and developing economies,” Util. Policy, vol. 80, p. 101487, 2023. no., pp DOI: 10.1016/j.jup.2022.
  • W. Feng, et al., “A review of microgrid development in the United States – A decade of progress on policies, demonstrations, controls, and software tools,” Appl. Energy, vol. 228, pp. 1656–1668, 2018. DOI: 10.1016/j.apenergy.2018.06.096.
  • P. Liu, R. Zhao and X. Han, “Assessing the efficiency and the justice of energy transformation for the United States of America, China, and the European Union,” Sustainable Dev., vol. 31, no. 5, pp. 3387–3407, 2023. DOI: 10.1002/sd.2591.
  • Z. Jiang, et al., “Green innovation transformation, economic sustainability and energy consumption during China’s new normal stage,” J. Cleaner Prod., vol. 273, p. 123044, 2020. DOI: 10.1016/j.jclepro.2020.123044.
  • P. K. Gorijeevaram Reddy, S. Dasarathan and V. Krishnasamy, “Investigation of adaptive droop control applied to low-voltage DC microgrid,” Energies, vol. 14, no. 17, p. 5356, 2021. DOI: 10.3390/en1417.
  • Z. Shuai, et al., “Droop control method for load share and voltage regulation in high-voltage microgrids,” J. Mod. Power Syst. Clean Energy, vol. 4, no. 1, pp. 76–86, 2016. DOI: 10.1007/s40565-015-0176-1.
  • Y. Peng, et al., “Microgrid optimal dispatch based on distributed economic model predictive control algorithm,” Energies, vol. 16, no. 12, p. 4658, 2023. DOI: 10.3390/en16124658.
  • T. H. Pham, et al., “Economic constrained optimization for power balancing in a DC microgrid: A multi-source elevator system application,” Int. J. Electr. Power Energy Syst., vol. 118, p. 105753, 2020. DOI: 10.1016/j.ijepes.2019.
  • S. Swaminathan, G. S. Pavlak and J. Freihaut, “Sizing and dispatch of an islanded microgrid with energy flexible buildings,” Appl. Energy, vol. 276, p. 115355, 2020. DOI: 10.1016/j.apenergy.2020.
  • V. Kumar, et al., “Stochastic wind energy integrated multi source power system control via a novel model predictive controller based on Harris Hawks optimization,” Energy Sources Part A, vol. 44, no. 4, pp. 10694–10719, 2022. DOI: 10.1080/15567036.2022.2156637.
  • S. S. Khorramabadi and A. Bakhshai, “Critic-based self-tuning PI structure for active and reactive power control of VSCs in microgrid systems,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 92–103, 2015. DOI: 10.1109/TSG.2014.2354651.
  • S. Mehta and P. Basak, “A comprehensive review on control techniques for stability improvement in microgrids,” Int. Trans. Electr. Energy Syst., vol. 31, no. 4, p. 28, 2021. DOI: 10.1002/2050-7038.12822.
  • M. Armin, et al., “Robust extended h-infinity control strategy using linear matrix inequality approach for islanded microgrid,” IEEE Access., vol. 8, pp. 135883–135896, 2020. DOI: 10.1109/ACCESS.2020.3009188.
  • Y. Naderi, et al., “Multi-objective model predictive control for microgrid applications,” Int. J. Electr. Power Energy Syst., vol. 154, p. 109441, 2023. DOI: 10.1016/j.ijepes.2023.
  • C. Deng, et al., “Distributed resilient secondary control for DC microgrids against heterogeneous communication delays and DoS attacks,” IEEE Trans. Ind. Electron., vol. 69, no. 11, pp. 11560–11568, 2022. DOI: 10.1109/TIE.2021.3120492.
  • J. Chen, et al., “Static and dynamic event-triggered mechanisms for distributed secondary control of inverters in low-voltage islanded microgrids,” IEEE Trans. Cybern., vol. 52, no. 7, pp. 6925–6938, 2022. DOI: 10.1109/tcyb.2020.3034727.
  • T. J. Zhang, D. Yue, L. Yu, et al., “Joint energy and workload scheduling for fog-assisted multimicrogrid systems: A deep reinforcement learning approach,” IEEE Syst. J., vol. 17, no. 1, p. 12, 2022. DOI: 10.1109/jsyst.2022.3171534.
  • N. Mohammed, et al., “Accurate reactive power sharing strategy for droop-based islanded AC microgrids,” IEEE Trans. Ind. Electron., vol. 70, no. 3, pp. 2696–2707, 2023. DOI: 10.1109/TIE.2022.3167141.
  • J. Lu, et al., “A distributed control strategy for unbalanced voltage compensation in islanded AC microgrids without continuous communication,” IEEE Trans. Ind. Electron., vol. 70, no. 3, pp. 2628–2638, 2023. DOI: 10.1109/TIE.2022.3169841.
  • M.-H. Khooban, et al., “A robust adaptive load frequency control for micro-grids,” ISA Trans., vol. 65, pp. 220–229, 2016. DOI: 10.1016/j.isatra.2016.07.002.
  • S. M. Hashemi, et al., “Multi-objective operation of microgrids based on electrical and thermal flexibility metrics using the NNC and IGDT methods,” Int. J. Electr. Power Energy Syst., vol. 144, p. 108617, 2023. DOI: 10.1016/j.ijepes.2022.108617.
  • Y. Bu, et al., “Considering author sequence in all-author co-citation analysis,” Inf. Process. Manage., vol. 57, no. 6, p. 102300, 2020. DOI: 10.1016/j.ipm.2020.102300.
  • W. Jiang, et al., “Autonomous finite-time backstepping control for decentralized economic power dispatch in DC microgrids toward large-signal stability,” IEEE Trans. Ind. Electron., vol. 71, no. 3, pp. 2942–2954, 2024. DOI: 10.1109/TIE.2023.3262880.
  • S. Sharma, et al., “New mesh configurations with decentralized droop control method for DC microgrids,” IEEE Trans. Ind. Electron., vol. 71, no. 1, pp. 560–571, 2024. DOI: 10.1109/TIE.2023.3245220.
  • A. M. Othman, “Synergy of robust adaptive emulated- controller and enhanced mud layers optimization for microgrid dynamics improvement,” Renewable Sustainable Energy Rev., vol. 166, p. 112576, 2022. DOI: 10.1016/j.rser.2022.
  • M. Kumar, “Control techniques for operation of roof-top solar photovoltaics based microgrid in islanded mode,” Int. J. Electr. Power Energy Syst., vol. 155, p. 109511, 2024. DOI: 10.1016/j.ijepes.2023.
  • A. R. Battula and S. Vuddanti, “Distributed control strategy for secondary frequency regulation with EV demand aggregation and delay compensation in AC unbalanced microgrid,” Electr. Power Syst. Res., vol. 225, p. 109782, 2023. DOI: 10.1016/j.epsr.2023.
  • C. Dou, et al., “Layered management and hybrid control strategy based on hybrid automata and random forest for microgrid,” IET Renewable Power Gener., vol. 13, no. 16, pp. 3113–3123, 2019. DOI: 10.1049/iet-rpg.2019.0664.
  • C. Dou, et al., “Event‐triggered hybrid control strategy based on hybrid automata and decision tree for microgrid,” IET Gener. Transm. Distrib., vol. 13, no. 14, pp. 3066–3077, 2019. DOI: 10.1049/iet-gtd.2018.6928.
  • C. Wang, et al., “Impacts of cyber system on microgrid operational reliability,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 105–115, 2019. DOI: 10.1109/TSG.2017.2732484.
  • M.-T. Kuo and S.-D. Lu, “Design and implementation of real-time intelligent control and structure based on multi-agent systems in microgrids,” Energies, vol. 6, no. 11, pp. 6045–6059, 2013. DOI: 10.3390/en6116045.
  • X. Yang, et al., “Impact analysis of cyber system in microgrids: Perspective from economy and reliability,” Int. J. Electr. Power Energy Syst., vol. 135, p. 107422, 2022. no., pp DOI: 10.1016/j.ijepes.2021.107422.
  • S. Areekkara, R. Kumar and R. C. Bansal, “An intelligent multi agent based approach for autonomous energy management in a microgrid,” Electr. Power Compon. Syst., vol. 49, nos. 1–2, pp. 18–31, 2021. DOI: 10.1080/15325008.2021.1937390.
  • J. M. Guerrero, et al., “Advanced control architectures for intelligent microgrids-Part I: Decentralized and hierarchical control,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1254–1262, 2013. DOI: 10.1109/TIE.2012.2194969.
  • D. E. Olivares, et al., “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905–1919, 2014. DOI: 10.1109/TSG.2013.2295514.
  • Q. Shafiee, J. M. Guerrero and J. C. Vasquez, “Distributed secondary control for islanded microgrids—A novel approach,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 1018–1031, 2014. DOI: 10.1109/TPEL.2013.2259506.
  • X. Lu, et al., “An improved droop control method for DC microgrids based on low bandwidth communication with DC bus voltage restoration and enhanced current sharing accuracy,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1800–1812, 2014. DOI: 10.1109/TPEL.2013.2266419.
  • Q.-C. Zhong, “Robust droop controller for accurate proportional load sharing among inverters operated in parallel,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1281–1290, 2013. DOI: 10.1109/TIE.2011.2146221.
  • Y. Han, et al., “Review of active and reactive power sharing strategies in hierarchical controlled microgrids,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2427–2451, 2017. DOI: 10.1109/TPEL.2016.2569597.
  • H. Han, et al., “Review of power sharing control strategies for islanding operation of AC microgrids,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 200–215, 2016. DOI: 10.1109/TSG.2015.2434849.
  • T. Dragicevic, et al., “DC microgrids–Part I: A review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876–4891, 2015. DOI: 10.1109/TPEL.2015.2478859.
  • J. W. Simpson-Porco, et al., “Secondary frequency and voltage control of islanded microgrids via distributed averaging,” IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 7025–7038, 2015. DOI: 10.1109/TIE.2015.2436879.
  • A. Azam, et al., “Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace,” Renewable Sustainable Energy Rev., vol. 150, p. 111460, 2021. DOI: 10.1016/j.rser.2021.111460.
  • H. Liao, et al., “A bibliometric analysis and visualization of medical big data research,” Sustainability, vol. 10, no. 2, p. 166, 2018. DOI: 10.3390/su10010166.
  • R. Majumder, et al., “Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop,” IEEE Trans. Power Syst., vol. 25, no. 2, pp. 796–808, May 2010. DOI: 10.1109/TPWRS.2009.2032049.
  • J.-Y. Kim, et al., “Cooperative control strategy of energy storage system and microsources for stabilizing the microgrid during islanded operation,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3037–3048, 2010. DOI: 10.1109/TPEL.2010.2073488.
  • I. Rai, et al., “Nonlinear adaptive controller design to stabilize constant power loads connected-DC microgrid using disturbance accommodation technique,” Electr. Eng., vol. 106, no. 1, pp. 165–180, 2023. DOI: 10.1007/s00202-023-01982-5.
  • W. Du, et al., “A comparative study of two widely used grid-forming droop controls on microgrid small-signal stability,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 8, no. 2, pp. 963–975, 2020. DOI: 10.1109/JESTPE.2019.2942491.
  • B. Li, Y. Chen and J. He, “A simple closed-loop interphase power controller for cascaded H-bridge converter-based DG units in islanded microgrids with imbalanced loads,” J. Power Electron., vol. 23, no. 10, pp. 1605–1617, 2023. DOI: 10.1007/s43236-023-00659-3.
  • J. Choi and A. Bidram, “Distributed finite-time event-triggered current sharing and voltage control of DC microgrids,” Int. J. Elect. Power Energy Syst., vol. 151, p. 109142, 2023. DOI: 10.1016/j.ijepes.2023.
  • S. S. Rangarajan, et al., “DC microgrids: A propitious smart grid paradigm for smart cities,” Smart Cities, vol. 6, no. 4, pp. 1690–1718, 2023. DOI: 10.3390/smartcities6040079.
  • M. S. Alam, et al., “Planning and protection of DC microgrid: A critical review on recent developments,” Eng. Sci. Technol., Int. J., vol. 41, p. 101404, 2023. no., pp. DOI: 10.1016/j.jestch.2023.101404.
  • Y. Zhu, et al., “A virtual impedance optimization method for reactive power sharing in networked microgrid,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2890–2904, 2016. DOI: 10.1109/TPEL.2015.2450360.
  • S. M. S. Hosseinimoghadam, M. Dashtdar and M. Dashtdar, “Improving the sharing of reactive power in an islanded microgrid based on adaptive droop control with virtual impedance,” Autom. Control Comp. Sci., vol. 55, no. 2, pp. 155–166, 2021. DOI: 10.3103/S0146411621020061.
  • X. Wu, C. Shen and R. Iravani, “Feasible range and optimal value of the virtual impedance for droop-based control of microgrids,” IEEE Trans. Smart Grid, vol. 8, no. 3, pp. 1242–1251, 2017. DOI: 10.1109/TSG.2016.2519454.
  • J. Han, et al., “An autonomous power-frequency control strategy based on load virtual synchronous generator,” Processes, vol. 8, no. 4, p. 433, 2020. DOI: 10.3390/pr8040.
  • L. Meng, et al., “Design and parameter analysis of an improved pre-synchronization method for multiple inverters based on virtual synchronization generator control in microgrid,” Energy Rep., vol. 8, pp. 928–937, 2022. DOI: 10.1016/j.egyr.2022.02.111.
  • P. Li, et al., “A frequency control strategy of electric vehicles in microgrid using virtual synchronous generator control,” Energy, vol. 189, p. 116389, 2019. DOI: 10.1016/j.energy.2019.116389.
  • F. Aghaee, AD. Mahdian, N. Bayati, et al., “Distributed control methods and impact of communication failure in AC microgrids: A comparative review,” Electronics, Vol. 8, no. 11, p. 1265, 2019. DOI: 10.3390/electronics8111265.
  • T. Morstyn, et al., “Unified distributed control for DC microgrid operating modes,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 802–812, 2016. DOI: 10.1109/TPWRS.2015.2406871.
  • T. Logenthiran, et al., “Intelligent control system for microgrids using multiagent system,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 4, pp. 1036–1045, 2015. DOI: 10.1109/JESTPE.2015.2443187.
  • A. L. Dimeas and N. D. Hatziargyriou, “Operation of a multiagent system for microgrid control,” IEEE Trans. Power Syst., vol. 20, no. 3, pp. 1447–1455, 2005. DOI: 10.1109/TPWRS.2005.852060.
  • H.-M. Kim, Y. Lim and T. Kinoshita, “An intelligent multiagent system for autonomous microgrid operation,” Energies, vol. 5, no. 9, pp. 3347–3362, 2012. DOI: 10.3390/en5093347.
  • N. R. Tummuru, M. K. Mishra and S. Srinivas, “An improved current controller for grid connected voltage source converter in microgrid applications,” IEEE Trans. Sustainable Energy, vol. 6, no. 2, pp. 595–605, 2015. DOI: 10.1109/TSTE.2015.2399496.
  • S.-Y. Lu, et al., “Integration of wind power and wave power generation systems using a DC microgrid,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 2753–2761, 2015. DOI: 10.1109/TIA.2014.2367102.
  • Y. Geng, N. Zhang and R. Zhu, “Research progress analysis of sustainable smart grid based on CiteSpace,” Energy Strategy Rev., vol. 48, p. 101111, 2024. DOI: 10.1016/j.esr.2023.101111.
  • N. Tomin, et al., “Design and optimal energy management of community microgrids with flexible renewable energy sources,” Renewable Energy, vol. 183, pp. 903–921, 2022. DOI: 10.1016/j.renene.2021.11.024.
  • S. Rath, et al., “A cyber-secure distributed control architecture for autonomous AC microgrid,” IEEE Syst. J., vol. 15, no. 3, pp. 3324–3335, 2021. DOI: 10.1109/JSYST.2020.3020968.
  • Z. Yang, et al., “Analysis of voltage control strategies for DC microgrid with multiple types of energy storage systems,” Electronics, vol. 12, no. 7, pp. 1661, 2023. DOI: 10.3390/electronics1207.
  • L. Guo, et al., “Research on multi-scenario variable parameter energy management strategy of rural community microgrid,” Appl. Sci., vol. 10, no. 8, p. 2730, 2020. DOI: 10.3390/app1008.
  • W. Lu, et al., “Design and application of microgrid operation control system based on IEC 61850,” J. Mod. Power Syst. Clean Energy, vol. 2, no. 3, pp. 256–263, 2014. DOI: 10.1007/s40565-014-0074-y.
  • M. Parol, et al., “Optimum management of power and energy in low voltage microgrids using evolutionary algorithms and energy storage,” Int. J. Electr. Power Energy Syst., vol. 119, p. 105886, 2020. DOI: 10.1016/j.ijepes.2020.
  • M. A. Jirdehi, et al., “Different aspects of microgrid management: A comprehensive review,” J. Energy Storage, vol. 30, p. 101457, 2020. DOI: 10.1016/j.est.2020.
  • Q. He, et al., “Mapping the managerial areas of building information modeling (BIM) using scientometric analysis,” Int. J. Project Manage., vol. 35, no. 4, pp. 670–685, May 2017. DOI: 10.1016/j.ijproman.2016.08.001.
  • M. Frivaldsky, et al., “System level simulation of microgrid power electronic systems,” Electronics, vol. 10, no. 6, p. 644, 2021. DOI: 10.3390/electronics10060644.
  • B. Huang, et al., “Distributed optimal control of DC microgrid considering balance of charge state,” IEEE Trans. Energy Convers., vol. 37, no. 3, pp. 1–1, 2022. DOI: 10.1109/TEC.2022.3169462.
  • G. V. B. Kumar and K. Palanisamy, “A review of energy storage participation for ancillary services in a microgrid environment,” Inventions, vol. 5, no. 4, p. 63, 2020. DOI: 10.3390/inventions5040063.
  • M. I. Juma, et al., “Design of a hybrid energy system with energy storage for standalone DC microgrid application,” Energies, vol. 14, no. 18, p. 5994, 2021. DOI: 10.3390/en14185994.
  • S. Rangi, S. Jain and Y. Arya, “Utilization of energy storage devices with optimal controller for multi-area hydro-hydro power system under deregulated environment,” Sustainable Energy Technol. Assess., vol. 52, p. 102191, 2022. no., pp. DOI: 10.1016/j.seta.2022.102191.
  • H. Pan, et al., “Energy coordinated control of DC microgrid integrated incorporating PV, energy storage and EV charging,” Appl. Energy, vol. 342, p. 121155, 2023. DOI: 10.1016/j.apenergy.2023.
  • A. Mirzabeigi, et al., “Distributed robust cooperative hierarchical control for island microgrids under hijacking attacks based on multiagent systems,” Int. Trans. Electr. Energy Syst., vol. 2023, pp. 1–15, 2023. DOI: 10.1155/2023/6622346.
  • M. S. Golsorkhi and M. Baharizadeh, “A unidirectional hierarchical control structure with zero power sharing error for hybrid AC/DC microgrid,” IEEE Trans. Energy Convers., vol. 38, no. 1, pp. 379–391, 2023. DOI: 10.1109/TEC.2022.3207566.
  • X. Hou, et al., “An improved decentralized control of cascaded inverters with robust stability against grid-voltage variation,” IEEE Trans. Energy Convers., vol. 38, no. 3, pp. 2223–2226, 2023. DOI: 10.1109/TEC.2021.3109797.
  • S. H. A. Soltani, S. Jalili and M. K. S. E. Eslami, “Decentralized control architecture for multi-authoring microgrids,” Computing, vol. 105, no. 12, pp. 2621–2646, 2023. DOI: 10.1007/s00607-023-01201-w.
  • P. A. Ahangar, S. A. Lone and N. Gupta, “Combining data-driven and model-driven approaches for optimal distributed control of standalone microgrid,” Sustainability, vol. 15, no. 16, p. 12286, 2023. DOI: 10.3390/su1516.
  • Z. Yang, F. Yang and J. Chen, “Optimal power distributed control of the DC microgrid in meshed configuration,” Front. Energy Res., vol. 11, p. 1201271, 2023. DOI: 10.3389/fenrg.2023.1201271.
  • R. Kandari, P. Gupta and A. Kumar, “Battery state of charge based improved adaptive droop control for power management of a microgrid having large scale renewable generation,” Sustainable Energy Technol. Assess., vol. 57, p. 103146, 2023. no., pp. DOI: 10.1016/j.seta.2023.103146.
  • H. Wang, et al., “Artificial neural network-based virtual synchronous generator dual droop control for microgrid systems,” Comput. Electr. Eng., vol. 111, p. 108930, 2023. no., pp DOI: 10.1016/j.compeleceng.2023.
  • F. Amiri and A. Hatami, “Load frequency control for two-area hybrid microgrids using model predictive control optimized by grey wolf-pattern search algorithm,” Soft Comput., vol. 27, no. 23, pp. 18227–18243, 2023. DOI: 10.1007/s00500-023-08077-0.
  • Y. Huang, et al., “Multi-objective optimization of campus microgrid system considering electric vehicle charging load integrated to power grid,” Sustainable Cities Soc., vol. 98, p. 104778, 2023. DOI: 10.1016/j.scs.2023.
  • G. Zhang, et al., “Load frequency control of marine microgrid system integrated with renewable energy sources,” J. Mar. Sci. Eng., vol. 11, no. 4, p. 844, 2023. DOI: 10.3390/jmse11040.
  • Z. Zhang, et al., “Accurate active and reactive power sharing based on a modified droop control method for islanded microgrids,” Sensors, vol. 23, no. 14, p. 6269, 2023. DOI: 10.3390/s2314.
  • C. Zhao, et al., “Optimal distributed coordinated reinforcement learning for secondary voltage control in time-delayed microgrid,” IEEE Syst. J., vol. 17, no. 3, pp. 3480–3491, 2023. DOI: 10.1109/JSYST.2023.3284403.
  • M. V. Kazemi, S. J. Sadati and S. A. Gholamian, “Adaptive frequency control of microgrid based on fractional order control and a data-driven control with stability analysis,” IEEE Trans. Smart Grid, vol. 13, no. 1, pp. 381–392, 2022. DOI: 10.1109/TSG.2021.3109627.
  • J. Xie, et al., “Wind farm power generation control via double-network-based deep reinforcement learning,” IEEE Trans. Ind. Inf., vol. 18, no. 4, pp. 2321–2330, 2022. DOI: 10.1109/TII.2021.3095563.
  • Z. Farooq, A. Rahman and S. A. Lone, “Power generation control of restructured hybrid power system with FACTS and energy storage devices using optimal cascaded fractional-order controller,” Optim. Control Appl. Methods, vol. 43, no. 3, pp. 757–786, May 2022. DOI: 10.1002/oca.2850.
  • O. Lasabi, et al., “Dynamic distributed collaborative control for equitable current distribution and voltage recovery in DC microgrids,” Energies, vol. 16, no. 18, p. 6657, 2023. DOI: 10.3390/en1618.
  • F. N. S. Al-Dulaimi and S. Kurnaz, “Optimized distributed cooperative control for islanded microgrid based on dragonfly algorithm,” Energies, vol. 16, no. 22, p. 7675, 2023. ppvDOI: 10.3390/en1622.
  • C. H. Liang, W. H. Ren, P. Cheng, et al., “Control strategy of photovoltaic DC microgrid based on fuzzy EEMD,” Tehnicki Vjesnik-Technical Gazette, vol. 29, no. 5, pp. 1762–9, 2022. DOI: 10.17559/tv-20220421043045.
  • K. Singh, M. Amir and Y. Arya, “Optimal dynamic frequency regulation of renewable energy based hybrid power system utilizing a novel TDF-TIDF controller,” Energy Sources Part A, vol. 44, no. 4, pp. 10733–10754, 2022. DOI: 10.1080/15567036.2022.2158251.
  • E. Zhao, et al., “Accurate peer-to-peer hierarchical control method for hybrid DC microgrid clusters,” Energies, vol. 16, no. 1, p. 421, 2022. DOI: 10.3390/en16010.
  • W. Yang, et al., “MPC-based three-phase unbalanced power coordination control method for microgrid clusters,” Energy Rep., vol. 9, pp. 1830–1841, 2023. DOI: 10.1016/j.egyr.2022.12.079.
  • D. Jain and D. Saxena, “Comprehensive review on control schemes and stability investigation of hybrid AC-DC microgrid,” Electric Power Syst. Res., vol. 218, p. 109182, 2023. DOI: 10.1016/j.epsr.2023.
  • M. U. Safder, et al., “Enhancing microgrid stability and energy management: Techniques, challenges, and future directions,” Energies, vol. 16, no. 18, p. 6417, 2023. DOI: 10.3390/en1618.
  • S. Alqahtani, et al., “Impact of the high penetration of renewable energy sources on the frequency stability of the saudi grid,” Electronics, vol. 12, no. 6, p. 1470, 2023. DOI: 10.3390/electronics1206.
  • E. Irmak, E. Kabalcı and A. Calpbinici, “Event‐triggered distributed secondary control for enhancing efficiency, reliability and communication in island mode DC microgrids,” IET Renewable Power Gen., vol. 18, no. 1, pp. 78–94, 2023. DOI: 10.1049/rpg2.12897.
  • J. X. Jin, et al., “Hierarchical cooperative control strategy of distributed hybrid energy storage system in an island direct current microgrid,” J. Energy Storage, vol. 57, p. 106205, 2023. DOI: 10.1016/j.est.2022.
  • M. S. Hossain Lipu, et al., “A review of controllers and optimizations based scheduling operation for battery energy storage system towards decarbonization in microgrid: Challenges and future directions,” J. Cleaner Prod., vol. 360, p. 132188, 2022. DOI: 10.1016/j.jclepro.2022.
  • K. A. Al Sumarmad, et al., “Energy management and voltage control in microgrids using artificial neural networks, PID, and fuzzy logic controllers,” Energies, vol. 15, no. 1, p. 303, 2022. DOI: 10.3390/en15010.
  • A. Sikander, et al., “Control design approach for improved voltage stability in microgrid energy storage system,” Microsyst. Technol., vol. 28, no. 12, pp. 2821–2828, 2022. DOI: 10.1007/s00542-022-05395-5.
  • R. Choudhary, J. N. Rai and Y. Arya, “Cascade FOPI-FOPTID controller with energy storage devices for AGC performance advancement of electric power systems,” Sustainable Energy Technol. Assess., vol. 53, p. 102671, 2022. DOI: 10.1016/j.seta.2022.102671.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.