48
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Novel Adaptive Third-Order Continuous Super-Twisting Controller of a Five Phase Permanent Magnet Synchronous Wind Generator

, , , &
Received 25 Jan 2024, Accepted 24 Apr 2024, Published online: 15 May 2024

References

  • Y. Zhou, D. Zhu, X. Zou, C. He, J. Hu and Y. Kang, “Adaptive temporary frequency support for DFIG-based wind turbines,” IEEE Trans. Energy Convers., vol. 38, no. 3, pp. 1937–1949, 2023. DOI: 10.1109/TEC.2023.3247034.
  • H. Benbouhenni, N. Bizon, I. Colak, M. I. Mosaad and M. Yessef, “Direct active and reactive powers control of double-powered asynchronous generators in multi-rotor wind power systems using modified synergetic control,” Energy Reports, vol. 10, pp. 4286–4301, 2023. DOI: 10.1016/j.egyr.2023.10.085.
  • K. Sara, I. Khoukha, B. El Madjid, H. Benbouhenni and A. Emad, “A direct vector control based on modified SMC theory to control the double-powered induction generator-based variable-speed contra-rotating wind turbine systems,” Energy Reports, vol. 8, pp. 15057–15066, 2022. DOI: 10.1016/j.egyr.2022.11.052.
  • H. Gasmi, H. Benbouhenni, S. Mendaci and I. Colak, “A new scheme of the fractional-order super twisting algorithm for asynchronous generator-based wind turbine,” Energy Reports, vol. 9, pp. 6311–6327, 2023. DOI: 10.1016/j.egyr.2023.05.267.
  • H. Geng, L. Liu and R. Li, “Synchronization and reactive current support of PMSG-based wind farm during severe grid fault,” IEEE Trans. Sustain. Energy, vol. 9, no. 4, pp. 1596–1604, 2018. DOI: 10.1109/TSTE.2018.2799197.
  • J. Taghinezhad and S. Sheidaei, “Prediction of operating parameters and output power of ducted wind turbine using artificial neural networks,” Energy Reports, vol. 8, pp. 3085–3095, 2022. DOI: 10.1016/j.egyr.2022.02.065.
  • M. F. M. Arani, Y. A. Mohamed and I. R, “Assessment and enhancement of a full-scale PMSG-based wind power generator performance under faults,” IEEE Trans. Energy Convers., vol. 31, no. 2, pp. 728–739, 2016. DOI: 10.1109/TEC.2016.2526618.
  • M. Masoumi, “Machine learning solutions for offshore wind farms: a review of applications and impacts,” JMSE, vol. 11, no. 10, pp. 1855, 2023. DOI: 10.3390/jmse11101855.
  • Y. Soufi, S. Kahla and M. Bechouat, “Feedback linearization control based particle swarm optimization for maximum power point tracking of wind turbine equipped by PMSG connected to the grid,” Int. J. Hydrogen Energy, vol. 41, no. 45, pp. 20950–20955, 2016. DOI: 10.1016/j.ijhydene.2016.06.010.
  • M. Ayadi and N. Derbel, “Nonlinear adaptive backstepping control for variable-speed wind energy conversion system-based permanent magnet synchronous generator,” Int. J. Adv. Manuf. Technol., vol. 92, no. 1-4, pp. 39–46, Sep 2017. DOI: 10.1007/s00170-017-0098-3.
  • F. Zishan, L. Tightiz, J. Yoo and N. Shafaghatian, “Sustainability of the permanent magnet synchronous generator wind turbine control strategy in on-grid operating modes,” Energies, vol. 16, no. 10, pp. 4108, 2023. DOI: 10.3390/en16104108.
  • Z. Zhang, Y. Zhao, Q. Wang and L. Qu, “A discrete-time direct torque control for direct-drive PMSG-based wind energy conversion systems,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3504–3514, 2015. DOI: 10.1109/TIA.2015.2413760.
  • E. Bounadja, Z. Boudjema and A. Djahbar, “Direct-power control of a grid-connected five-phase permanent-magnet synchronous generator based on a five-to three-phase matrix converter,” J. Elect. Eng. Comput. Sci. (Elektrotehniški Vestnik), vol. 86, no. 1–2, pp. 21–28, 2019.
  • E. Bounadja, Z. Boudjema and A. Djahbar, “A new DPC-SVM for matrix converter used in wind energy conversion system based on multiphase permanent magnet synchronous generator,” Iran J. Elect. Electr. Eng. (IJEEE), vol. 03, pp. 352–363, 2019. DOI: 10.22068/IJEEE.15.3.352.
  • L. Chen, Y. Min, Y. Dai and M. Wang, “Stability mechanism and emergency control of power system with wind power integration,” IET Renew. Power Generat., vol. 11, no. 1, pp. 3–9, 2017. DOI: 10.1049/iet-rpg.2016.0147.
  • C. Chatri, M. Labbadi and M. Ouassaid, “Improved high-order integral fast terminal sliding mode-based disturbance-observer for the tracking problem of PMSG in WECS,” Int. J. Elect. Power Energy Syst., vol. 144, pp. 108514, 2023. DOI: 10.1016/j.ijepes.2022.108514.
  • S. M. Mozayan, S. Saad, H. Vahedi, H. Handy Fortin-Blanchette and M. Soltani, “Sliding mode control of PMSG wind turbine based on enhanced exponential reaching law,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6148–6159, 2016. DOI: 10.1109/TIE.2016.2570718.
  • S. E. Rhaili, A. Abdou, S. Marhraoui, R. Moutchou and N. El Hichami, Mohammed V University in Rabat., “Robust sliding mode control with five sliding surfaces of five-phase PMSG based variable speed wind energy conversion system,” IJIES, vol. 13, no. 4, pp. 346–357, 2020. DOI: 10.22266/ijies2020.0831.30.
  • Mousa, H. H. H. Youssef, A.-R. Mohamed, E. and E. M., “Optimal power extraction control schemes for five-phase PMSG based wind generation systems,” Eng. Sci. Technol. Int. J., vol. 23, no. 1, pp. 144–155, 2020. DOI: 10.1016/j.jestch.2019.04.004.
  • S. Huang, et al., “A fixed-time fractional-order sliding mode control strategy for power quality enhancement of PMSG wind turbine,” Int. J. Elect. Power Energy Syst., vol. 134, pp. 107354, 2022. DOI: 10.1016/j.ijepes.2021.107354.
  • Y. Mousavi, G. Bevan, I. B. Küçükdemiral and A. Fekih, “Maximum power extraction from wind turbines using a fault-tolerant fractional-order nonsingular terminal sliding mode controller,” Energies, vol. 14, no. 18, pp. 5887, 2021. DOI: 10.3390/en14185887.
  • M. S. Zanjani and S. Mobayen, “Anti-sway control of offshore crane on surface vessel using global sliding mode control,” Int. J. Control, vol. 95, no. 8, pp. 2267–2278, 2022. DOI: 10.1080/00207179.2021.1906447.
  • C. Chatri, M. Ouassaid, M. Labbadi and Y. Errami, “Integral-type terminal sliding mode control approach for wind energy conversion system with uncertainties,” Comput. Elect. Eng., vol. 99, pp. 107775, 2022. DOI: 10.1016/j.compeleceng.2022.107775.
  • C. Chen and H. Yu, “Backstepping sliding mode control of induction motor based on disturbance observer,” IET Electr. Power App., vol. 14, no. 12, pp. 2537–2546, 2020. DOI: 10.1049/iet-epa.2020.0485.
  • S. E. Rhaili, A. A. S. Marhraoui, N. El Hichami and R. Moutchou, “Optimal power generation control of 5-phase PMSG based WECS by using enhanced fuzzy fractional order SMC,” Int. J. Intell. Eng. Syst., vol. 15, no. 2, pp. 572–583, 2022. DOI: 10.22266/ijies2022.0430.51.
  • M. A. Khan, Q. Khan, L. Khan, I. Khan, A. A. Alahmadi and N. Ullah, “Robust differentiator-based neuro fuzzy sliding mode control strategies for PMSG-WECS,” Energies, vol. 15, no. 19, pp. 7039, 2022. DOI: 10.3390/en15197039.
  • B. Yang, et al., “Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine,” Renewable Energy, vol. 119, pp. 577–589, 2018. DOI: 10.1016/j.renene.2017.12.047.
  • Mousa, H. H. H. Youssef, A. Mohamed, E. and E. M., “Model predictive speed control of five-phase permanent magnet synchronous generator-based wind generation system via wind-speed estimation,” Int. Trans. Electr. Energ. Syst., vol. 29, no. 5, pp. e2826, 2019. DOI: 10.1002/2050-7038.2826.
  • L. He, F. Wang and D. Ke, “FPGA-based sliding-mode predictive control for PMSM speed regulation system using an adaptive ultralocal model,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5784–5793, 2021. DOI: 10.1109/TPEL.2020.3028545.
  • M. Nasiri, S. Mobayen and A. Arzani, “PID-type terminal sliding mode control for permanent magnet synchronous generator-based enhanced wind energy conversion systems,” Csee Jpes., vol. 8, no. 4, pp. 993–1003, 2021. DOI: 10.17775/CSEEJPES.2020.06590.
  • E. H. Dursun and A. A. Kulaksiz, “Second-order sliding mode voltage-regulator for improving MPPT efficiency of PMSG-based WECS,” Int. J. Elect. Power Energy Syst., vol. 121, pp. 106149, 2020. DOI: 10.1016/j.ijepes.2020.106149.
  • L. Ma, Y. Zhang, X. Yang, S. Ding and L. Dong, “Quasi-continuous second-order sliding mode control of buck converter,” IEEE Access, vol. 6, no. 18, pp. 17859–17867, 2018. DOI: 10.1109/ACCESS.2018.2795027.
  • J. A. Moreno and M. Osorio, “Strict Lyaponuv functions for the super-twisting algorithm,” IEEE Trans. Automat. Contr., vol. 57, no. 4, pp. 1035–1040, 2012. DOI: 10.1109/TAC.2012.2186179.
  • B. Beltran, M. E. H. Benbouzid and T. Ahmed-Ali, “Second-order sliding mode control of a doubly fed induction generator driven wind turbine,” IEEE Trans. Energy Conver., vol. 27, no. 2, pp. 261–269, 2012. DOI: 10.1109/TEC.2011.2181515.
  • Q. Yun, X. Wang, C. Yao, W. Zhuang, M. Shao and H. Gao, “A second-order sliding mode voltage controller with fast convergence for a permanent magnet synchronous generator system,” Processes, vol. 12, no. 1, pp. 71, 2023. DOI: 10.3390/pr12010071.
  • L. Xiong, P. Li, M. Ma, Z. Wang and J. Wang, “Output power quality enhancement of PMSG with fractional order sliding mode control,” Int. J. Elect. Power Energy Syst., vol. 115, pp. 105402, 2020. DOI: 10.1016/j.ijepes.2019.105402.
  • Z. Liao, Y. Hao, T. Guo, B. Lv and Q. Wang, “Second-order sliding mode control of permanent magnet synchronous motor based on singular perturbation,” Energies, vol. 15, no. 21, pp. 8028, 2022. DOI: 10.3390/en15218028.
  • N. Nasiri, S. Mobayen and Q. Min Zhu, “Super-twisting sliding mode control for gearless PMSG-based wind turbine,” Complexity, vol. 2019, pp. 1–15, 2019. DOI: 10.1155/2019/6141607.
  • A. Guettab, E. Bounadja, Z. Boudjema and R. Taleb, “Third-order super-twisting control of a double stator asynchronous generator integrated in a wind turbine system under single-phase open fault,” Circuit Theory App., vol. 51, no. 4, pp. 1858–1878, 2023. DOI: 10.1002/cta.3511.
  • S. Kadi, H. Benbouhenni, E. Abdelkarim, K. Imarazene and E. Berkouk, “Implementation of third-order sliding mode for power control and maximum power point tracking in DFIG-based wind energy systems,” Energy Reports, vol. 10, pp. 3561–3579, 2023. DOI: 10.1016/j.egyr.2023.09.187.
  • H. Benbouhenni and N. Bizon, “Improved rotor flux and torque control based on the third-order sliding mode scheme applied to the asynchronous generator for the single-rotor wind turbine,” Mathematics, vol. 9, no. 18, pp. 2297, 2021. DOI: 10.3390/math9182297.
  • H. Benbouhenni and N. Bizon, “Third-order sliding mode applied to the direct field-oriented control of the asynchronous generator for variable-speed contra-rotating wind turbine generation systems,” Energies, vol. 14, no. 18, pp. 5877, 2021. DOI: 10.3390/en14185877.
  • T. Zhang, Z. Xu, J. Li, H. Zhang and C. Gerada, “A third-order super-twisting extended state observer for dynamic performance enhancement of sensorless IPMSM drives,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5948–5958, 2020. DOI: 10.1109/TIE.2019.2959498.
  • G. Wang, B. Wang and C. Zhang, “Fixed-time third-order super-twisting-like sliding mode motion control for piezoelectric nanopositioning stage,” Mathematics, vol. 9, no. 15, pp. 1770, 2021. DOI: 10.3390/math9151770.
  • K. Walid, M. Sofiane, H. Benbouhenni, G. Hamza and T. Es-Saadi, “Application of third-order sliding mode controller to improve the maximum power point for the photovoltaic system,” Energy Rep., vol. 9, pp. 5372–5383, 2023. DOI: 10.1016/jegyr.2023.04.366.
  • Y. Shtessel, L. Fridman and F. Plestan, “Adaptive sliding mode control and observation,” Int. J. Control., vol. 89, no. 9, pp. 1743–1746, 2016. DOI: 10.1080/00207179.2016.1194531.
  • S. W. Lee and K. H. Chun, “Adaptive sliding mode control for PMSG wind turbine systems,” Energies, vol. 12, no. 4, pp. 595, 2019. DOI: 10.3390/en12040595.
  • C. Zhang and F. Plestan, “Adaptive sliding mode control of floating offshore wind turbine equipped by permanent magnet synchronous generator,” Wind Energy, vol. 24, no. 7, pp. 754–769, 2021. DOI: 10.1002/we.2601.
  • Y. Shtessel, M. Taleb and F. Plestan, “A novel adaptive-gain supertwisting sliding mode controller: methodology and application,” Automatica, vol. 48, no. 5, pp. 759–769, 2012. DOI: 10.1016/j.automatica.2012.02.024.
  • X. Xiong, S. Kamal and S. Jin, “Adaptive gains to super-twisting technique for sliding mode design,” Asian J. Control, vol. 23, no. 1, pp. 362–373, 2021. DOI: 10.1002/asjc.2202.
  • A. Yahdou, A. B. Djilali, Z. Boudjema and F. Mehedi, “Using adaptive second order sliding mode to improve power control of a counter-rotating wind turbine under grid disturbances,” EJEE, vol. 22, no. 6, pp. 427–434, 2020. DOI: 10.18280/ejee.220604.
  • A. Ullah, l Khan, q Khan and S. Ahmad, “Variable gain high order sliding mode control approaches for PMSG based variable speed wind energy conversion system,” Turk. J. Elec. Eng. Comp. Sci., vol. 28, no. 5, pp. 2997–3012, 2020. Article 41. DOI: 10.3906/elk-1909-69.
  • M. Van, S. S. Ge and H. Ren, “Robust fault-tolerant control for a class of second-order nonlinear systems using an adaptive third-order sliding mode control,” IEEE Trans. Syst. Man. Cybern. Syst., vol. 47, no. 2, pp. 1–8, 2016. DOI: 10.1109/TSMC.2016.2557220.
  • A. Guettab, Z. Boudjema, E. Bounadja and R. Taleb, “Improved control scheme of a dual star induction generator integrated in a wind turbine system in normal and open-phase fault mode,” Energy Reports, vol. 8, pp. 6866–6875, 2022. DOI: 10.1016/j.egyr.2022.05.048.
  • Mousa, H. H. H. Youssef, A. R. Mohamed, E. and E. M., “Variable step size P&O MPPT algorithm for optimal power extraction of multi-phase PMSG based wind generation system,” Int. J. Elect. Power Energy Syst., vol. 108, pp. 218–231, 2019. DOI: 10.1016/j.ijepes.2018.12.044.
  • A. Levant, “Sliding order and slinding accuracy in sliding mode control,” Int. J. Control., vol. 58, no. 6, pp. 1247–1263, 1993. DOI: 10.1080/00207179308923053.
  • S. Kamal, A. Chalanga, J. A. Moreno, L. Fridman and B. Bandyopadhyay, Higher order super-twisting algorithm. In: 13th IEEE Workshop on Variable Structure Systems (VSS). Nantes, France, 22 Jun -29 July, 2014.
  • A. Chalanga, W. Chen, L. Fridman, B. Bandyopadhyay and J. A. Moreno, “Implementation of super-twisting control: super-twisting and higher order sliding-mode observer-based approaches,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3677–3685, 2016. DOI: 10.1109/TIE.2016.2523913.
  • H. Salime, B. Bossoufi, S. Motahhir and Y. ElMourabit, “A novel combined FFOC-DPC control for wind turbine based on the permanent magnet synchronous generator,” Energy Reports, vol. 9, pp. 3204–3221, 2023. DOI: 10.1016/j.egyr.2023.02.012.
  • A. Beddar, H. Bouzekri, B. Babes and H. Afghoul, “Experimental enhancement of fuzzy fractional order PI + I controller of grid connected variable speed wind energy conversion system,” Energy Convers. Manage., vol. 123, pp. 569–580, 2016. DOI: 10.1016/j.enconman.2016.06.070.
  • Y. Ihedrane, C. Bekkali, M. Ghamrasni, S. Mensou and B. Bossoufi, “Improved wind system using non-linear power control,” Indones. J. Electr. Eng. Comput. Sci., vol. 14, no. 3, pp. 1148–1158, 2019. DOI: 10.11591/ijeecs.v14.i3.pp1148-1158.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.