28
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Low Cost Low Power TEG Based Generator Including Passive Solar Tracking and Passive Cooling Processes

ORCID Icon
Received 06 Dec 2023, Accepted 25 Apr 2024, Published online: 10 May 2024

References

  • M. Mejdal, A. Abouhilal, E. H. Chahid and A. Malaoui, “Effects of temperature in the performance of the thermoelectric devises: power generation,” 2016 International Renewable and Sustainable Energy Conference (IRSEC), 2016, 338–343 DOI: 10.1109/IRSEC.2016.7984011.
  • Y. Köysal, “Performance analysis on solar concentrating thermoelectric generator coupled with heat sink,” Int. J. Precis. Eng. Manuf, vol. 20, no. 2, pp. 313–318, 2019. DOI: 10.1007/s12541-019-00060-w.
  • R. Swanson, “The promise of concentrators,” Prog. Photovolt: res. Appl, vol. 8, no. 1, pp. 93–111, 2000. DOI: 10.1002/(SICI)1099-159X(200001/02)8:1<93::AID-PIP303>3.0.CO;2-S.
  • F. Duerr, Y. Meuret and H. Thienpont, “Miniaturization of Fresnel lenses for solar concentration: a quantitative investigation,” Appl Opt, vol. 49, no. 12, pp. 2339–46, 2010. DOI: 10.1364/AO.49.002339.
  • C. Algora, et al., “A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns,” IEEE Trans. Electron Devices, vol. 48, no. 5, pp. 840–844, 2001. DOI: 10.1109/16.918225.
  • A. Royne, C. Dey and D. Mills, “Cooling of photovoltaic cells under concentrated illumination: a critical review,” Solar Energy Mater. Sol. Cells, vol. 86, no. 4, pp. 451–483, 2005. DOI: 10.1016/j.solmat.2004.09.003.
  • K. Araki, H. Uozumi and M. Yamaguchi, “A simple passive cooling structure and its heat analysis for 500 × concentrator PV module,” Conf. Rec. IEEE Photovoltaic Specialists Conf., vol. 29, pp. 1568–1571, 2002.
  • Z. Cheng, W. Niu and X. Cao, “Theoretical analysis of temperature field and thermoelectric efficiency of cylindrical thermoelectric generators,” 14th symposium on piezoelectrcity, acoustic waves and device applications (SPAWDA), pp. 1–5, 2019.
  • F. Attivissimo, A. Di Nisio, A. M. L. Lanzolla and M. Paul, “Feasibility of a photovoltaic–thermoelectric generator: performance analysis and simulation results,” IEEE Trans. Instrum. Meas, vol. 64, no. 5, pp. 1158–1169, 2015. DOI: 10.1109/TIM.2015.2410353.
  • A. E. Özdemir, Y. Köysal, E. Özbaş and T. Atalay, “The experimental design of solar heating thermoelectric generator with wind cooling chimney,” Energy Conversion Manage., vol. 98, pp. 127–133, 2015. DOI: 10.1016/j.enconman.2015.03.108.
  • Z. Djafar, N. Putra and R. A. Koestoer, “The utilization of heat pipe on cold surface of thermoelectric with low-temperature waste heat,” AMM, vol. 302, pp. 410–415, 2013. DOI: 10.4028/www.scientific.net/AMM.302.410.
  • A. E. Risseh, H. Nee and C. Goupil, “Electrical power conditioning system for thermoelectric waste heat recovery in commercial vehicles,” IEEE Trans. Transp. Electrific, vol. 4, no. 2, pp. 548–562, 2018. DOI: 10.1109/TTE.2018.2796031.
  • P. Alegría, L. Catalán, M. Araiz, A. Casi and D. Astrain, “Thermoelectric generator for high temperature geothermal anomalies: experimental development and field operation,” Geothermics, vol. 110, pp. 102677, 2023. DOI: 10.1016/j.geothermics.2023.102677.
  • B. Hou, Y. Zheng, L. Xing and Q. Song, “Performance of a thermoelectric heat pump with recirculation and regenerative heat recovery,” Appl. Therm. Eng., vol. 223, pp. 120042, 2023. DOI: 10.1016/j.applthermaleng.2023.120042.
  • M. Saha, O. Tregenza, J. Twelftree and C. Hulston, “A review of thermoelectric generators for waste heat recovery in marine applications,” Sustain. Energy Technol. Assessment., vol. 59, pp. 103394, 2023. DOI: 10.1016/j.seta.2023.103394.
  • G. J. Snyder, et al., “Testing of milliwatt power source components,” Twenty-First International Conference on Thermoelectrics, Proceedings ICT’02, pp. 463–470, 2002.
  • J. Dongsheng and P. Zhang, “An electrical power system of Mars rover,” IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2014. pp. 1–4
  • F. Ritz and C. E. Peterson, “Multi-mission radioisotope thermoelectric generator (MMRTG) program overview,” IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720), 2004. 5, pp. 2950–2957
  • D. Rowe, “Applications of nuclear-powered thermoelectric generators in space,” Appl. Energy, vol. 40, no. 4, pp. 241–271, 1991. DOI: 10.1016/0306-2619(91)90020-X.
  • G. C. Christidis, I. C. Karatzaferis, M. Sautreuil, E. C. Tatakis and N. P. Papanikolaou, “Modeling and analysis of an innovative waste heat recovery system for helicopters,” Proc. 15th Eur. Conf. Power Electron. Appl. (EPE), Lille, France, pp. 1–10, 2013. DOI: 10.1109/EPE.2013.6634603.
  • G. Verma and V. Sharma, “A novel thermoelectric energy harvester for wireless sensor network application,” IEEE Trans. Ind. Electronics, vol. 66, pp. 3530–3538, 2019.
  • D. Yang and H. Yin, “Energy conversion efficiency of a novel hybrid solar system for photovoltaic, thermoelectric, and heat utilization,” IEEE Trans. Energy Convers, vol. 26, no. 2, pp. 662–670, 2011. DOI: 10.1109/TEC.2011.2112363.
  • M. N. Ibrahim, H. Rezk, M. Al-Dahifallah and P. Sergeant, “Hybrid photovoltaic-thermoelectric generator powered synchronous reluctance motor for pumping applications,” IEEE Access, vol. 7, pp. 146979–146988, 2019. DOI: 10.1109/ACCESS.2019.2945990.
  • N. Muralidhar, M. Himabindu and R. V. Ravikrishna, “Modeling of a hybrid electric heavy duty vehicle to assess energy recovery using a thermoelectric generator,” Energy, vol. 148, pp. 1046–1059, 2018. DOI: 10.1016/j.energy.2018.02.023.
  • B. Li, K. Huang, Y. Yan, Y. Li, S. Twaha and J. Zhu, “Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles,” Appl. Energy, vol. 205, pp. 868–879, 2017. DOI: 10.1016/j.apenergy.2017.08.092.
  • Y. Wang, C. Dai and S. Wang, “Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source,” Appl. Energy, vol. 112, pp. 1171–1180, 2013. DOI: 10.1016/j.apenergy.2013.01.018.
  • M. Srinivasan and S. M. Praslad, “Advanced thermoelectric energy recovery system in light duty and heavy duty vehicles: analysis on technical and marketing challenges,” Proc. Int. Conf. Power Electron. Drives Syst. (PEDS), vol. 2, pp. 977–982, 2005.
  • L. I. Anatychuk and P. D. Mikityuk, “Thermal generators using heat flows in soils,” Proc. 22nd Int. Conf. Thermoelect, 2003. pp. 598–601
  • S. A. Whalen and R. C. Dykhuizen, “Thermoelectric energy harvesting from diurnal heat flow in the upper soil layer,” Energy Conversion Manage., vol. 64, pp. 397–402, 2012. DOI: 10.1016/j.enconman.2012.06.015.
  • Y. Meydbray, R. Singh and A. Shakouri, “Thermoelectric module construction for low temperature gradient power generation,” 24th International Conference on Thermoelectrics, pp. 348–351., 2005.
  • S. Pullwitt, U. Kulau, R. Hartung and L. C. Wolf, “A Feasibility Study on energy harvesting from soil temperature differences,” Proceedings of the 7th International Workshop on Real-World Embedded Wireless Systems and Networks, 2018, pp. 1–6 DOI: 10.1145/3277883.3277886.
  • U. Datta, S. Dessouky and A. T. Papagiannakis, “Thermal energy harvesting from asphalt roadway pavement,” Advancement in the Design and Performance of Sustainable Asphalt Pavements, pp. 272–286. Springer: Cham, Switzerland, 2018,
  • H. O. Tabrizi, H. M. P. C. Jayaweera and A. Muhtaroğlu, “Fully integrated autonomous interface with maximum power point tracking for energy harvesting TEGs with high power capacity,” IEEE Trans. Power Electron, vol. 35, no. 5, pp. 4905–4914, 2020. DOI: 10.1109/TPEL.2019.2945913.
  • Z. Shang, Y. Zhao, W. Gou, L. Geng and Y. Lian, “83.9% efficiency 100-mV self-startup boost converter for thermoelectric energy harvester in IoT applications,” IEEE Trans. Circuits Syst. II, vol. 67, no. 9, pp. 1654–1658, 2020. DOI: 10.1109/TCSII.2020.2999331.
  • T. Chang and G. A. Rincón-Mora, “Fast energy-harvesting TEG-supplied charging regulator microsystem,” in IEEE Trans. Power Electron, vol. 38, no. 7, pp. 9116–9126, 2023. DOI: 10.1109/TPEL.2023.3265068.
  • S.-H. Wu, X. Liu, Q. Wan, Q. Kuai, Y.-K. Teh and P. K. T. Mok, “A 0.3-V ultralow-supply-voltage boost converter for thermoelectric energy harvesting with time-domain-based MPPT,” IEEE Solid-State Circuits Lett, vol. 4, pp. 100–103, 2021. DOI: 10.1109/LSSC.2021.3076923.
  • R. Mulla, D. R. Jones and C. V. Dunnill, “Thermoelectric paper: graphite pencil traces on paper to fabricate a thermoelectric generator,” Adv. Mater. Technol, vol. 5, pp. 2–9, 2020.
  • S. M. Yang and Y. J. Huang, “On the performance of thermoelectric energy generators by stacked thermocouples design in CMOS process,” IEEE Sensors J, vol. 22, no. 19, pp. 18318–18325, 2022. DOI: 10.1109/JSEN.2022.3196017.
  • S. M. Yang and Y. J. Huang, “Development of thermoelectric energy generator with high area density stacked polysilicon thermocouples,” Sens. Actuators A Phys, vol. 344, pp. 113689, 2022.
  • S. Zhang and X. Liao, “The thermoelectric-photoelectric integrated power generator and its design verification,” Solid-State Electron, vol. 170, pp. 107818, 2020. DOI: 10.1016/j.sse.2020.107818.
  • S. K. Mogadam, M. Salimi, S. M. T. Bathaee and D. Mirabasi, “A Novel Lyapunov-based nonlinear controller design for model-based MPPT of the thermoelectric generators,” Scientia Iranica, vol. 0, no. 0, pp. 0–0, 2023. DOI: 10.24200/sci.2023.61170.7177.
  • Z. Tang, L. Yue, C. Qi and L. Liang, “Photothermal and thermoelectric power generation performance based on bionic structure and composite nanofluids,” Colloid Surf. A: Phys. Eng. Aspect., vol. 670, pp. 131623, 2023. DOI: 10.1016/j.colsurfa.2023.131623.
  • A. G. Darmoyono, H. R. Suwarman and A. Nurhayati, “Utilizing thermoelectric generator Peltier in using solar thermal energy as renewable energy source,” 2018 International Conference on Applied Engineering (ICAE), Batam, Indonesia, 2018. pp. 1–4. DOI: 10.1109/INCAE.2018.8579358.
  • B. Singh, L. Tan, A. Date and A. Akbarzadeh, “Power generation from salinity gradient solar pond using thermoelectric generators for renewable energy application,” IEEE International Conference on Power and Energy (PECon), 2012. pp. 89–92.
  • L. Huang, Y. Zheng, L. Xing and B. Hou, “Recent progress of thermoelectric applications for cooling/heating, power generation, heat flux sensor and potential prospect of their integrated applications,” Therm. Sci. Eng. Progress, vol. 45, pp. 102064, 2023. DOI: 10.1016/j.tsep.2023.102064.
  • D. M. Rowe, CRC Handbook of Thermoelectrics. CRC Press LLC: Boca Raton, FL, USA, 1995.
  • A. E. Özdemir, Y. Köysal, E. Özbaş and T. Atalay, “Conceptual design of solar and sea based renewable energy production with thermoelectric generator,” 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 26–28 November 2015, DOI: 10.1109/ELECO.2015.7394648.
  • https://tecteg.com/wp-content/uploads/2014/09/SpecTEG1-12611-8.0Thermoelectric-generator. pdf
  • M. Q. Duong, V. T. Nguyen, A. T. Tran, G. N. Sava and T. M. C. Le, “Performance assessment of low-pass filters for standalone solar power system,” 2018 International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, 2018. pp. 0503–0507, DOI: 10.1109/ICEPE.2018.8559942.
  • N. S. Al-Dohani, N. Nagaraj, A. Anarghya and V. N. Abhishek, “Development of powerhouse using Fresnel lens,” MATEC Web Conf, vol. 144, pp. 04006, 2018. DOI: 10.1051/matecconf/201714404006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.