32
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Rapid Prototyping and Hardware-In-the-Loop Verification of Enhanced Sliding Mode Control of an Asynchronous Machine Using a Xilinx System Generator and an FPGA-Zynq Board

, &
Received 08 Jan 2024, Accepted 25 Apr 2024, Published online: 23 May 2024

References

  • N. El Ouanjli et al., “Modern improvement techniques of direct torque control for induction motor drives-a review,” Prot. Control Mod. Power Syst., vol. 4, no. 1, pp. 1–12, 2019. DOI: 10.1186/s41601-019-0125-5.
  • D. Zellouma, H. Benbouhenni, and Y. Bekakra, “Backstepping control based on a third-order sliding mode controller to regulate the torque and flux of asynchronous motor drive,” Period. Polytech. Electr. Eng. Comp. Sci., vol. 67, no. 1, pp. 10–20, 2023. DOI: 10.3311/PPee.20333.
  • A. K. Junejo, W. Xu, C. Mu, M. M. Ismail, and Y. Liu, “Adaptive speed control of PMSM drive system based a new sliding-mode reaching law,” IEEE Trans. Power Electron., vol. 35, no. 11, pp. 12110–12121, 2020. DOI: 10.1109/TPEL.2020.2986893.
  • C. Chen et al., “Adaptive fault-tolerant control of five-phase permanent magnet synchronous motor current using chaotic-particle swarm optimization,” Front. Energy Res., vol. 10, pp. 994629, 2022. DOI: 10.3389/fenrg.2022.994629.
  • M. Shao, Y. Deng, H. Li, J. Liu, and Q. Fei, “Sliding mode observer-based parameter identification and disturbance compensation for optimizing the mode predictive control of PMSM,” Energies, vol. 12, no. 10, pp. 1857, 2019. DOI: 10.3390/en12101857.
  • F. Mehedi, L. Nezli, M. O. H. Mahmoudi, R. Taleb, and D. Boudana, “Fuzzy logic based vector control of multi-phase permanent magnet synchronous motors,” J. Renew. Energies, vol. 22, no. 1, pp. 161–170, 2023. DOI: 10.54966/jreen.v22i1.734.
  • M. Hermassi et al., “Design of vector control strategies based on fuzzy gain scheduling PID controllers for a grid-connected wind energy conversion system: hardware FPGA-in-the-loop verification,” Electronics, vol. 12, no. 6, pp. 1419, 2023. DOI: 10.3390/electronics12061419.
  • S. Krim, S. Gdaim, A. Mtibaa, and M. F. Mimouni, 2015. “Fuzzy speed controller for an induction motor associated with the Direct Torque Control: implementation on the FPGA,” 2015 4th Int. Conf. on Systems and Control (ICSC), 28–30 April 2015 (pp. 492–497). Sousse, Tunisia: IEEE. DOI: 10.1109/ICoSC.2015.7153297.
  • H. Benbouhenni, R. Taleb, and H. Mellah, 2017. “Techniques neuromimétiques pour la correction d‘ondulations du couple et du flux de la DTC sept niveaux à 6 secteurs d‘une machine asynchrone,” 5ème Conférence Internationale en Automatique & Traitement de Signal (A1TS-2017), Mar 2017 (Vol. 24). Sousse, Tunisia: IEEE.
  • A. Bennassar, S. Banerjee, M. Jamma, A. Essalmi, and M. Akherraz, “Real time high performance of sliding mode controlled induction motor drives,” Procedia Comput. Sci., vol. 132, pp. 971–982, 2018. DOI: 10.1016/j.procs.2018.05.113.
  • A. Saghafinia, H. W. Ping, M. N. Uddin, and K. S. Gaeid, “Adaptive fuzzy sliding-mode control into chattering-free IM drive,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 692–701, 2015. DOI: 10.1109/TIA.2014.2328711.
  • L. B. Li, L. L. Sun, S. Z. Zhang, and Q. Q. Yang, “Speed tracking and synchronization of multiple motors using ring coupling control and adaptive sliding mode control,” ISA Trans., vol. 58, pp. 635–649, 2015. DOI: 10.1016/j.isatra.2015.07.010.
  • J. Longfei et al., 2019. “Fuzzy sliding mode control of permanent magnet synchronous motor based on the integral sliding mode surface,” 2019 22nd Int. Conf. on Electrical Machines and Systems (ICEMS), 1–14 August 2019 (pp. 1–6). Harbin, China: IEEE. DOI: 10.1109/ICEMS.2019.8921882.
  • S. Krim, S. Gdaim, A. Mtibaa, and M. F. Mimouni, “Modeling and hardware implementation on the FPGA of a variable structure control associated with a DTC-SVM of an induction motor,” Electr. Power Compon. Syst., vol. 45, no. 16, pp. 1806–1821, 2017. DOI: 10.1080/15325008.2017.1351010.
  • S. Krim, S. Gdaim, A. Mtibaa, and M. F. Mimouni, “Implementation on the FPGA of DTC-SVM based proportional integral and sliding mode controllers of an induction motor: a comparative study,” J. Circuit Syst. Comp., vol. 26, no. 3, pp. 1750049, 2017. DOI: 10.1142/S0218126617500499.
  • Z. B. Hadj Salah et al., “A new efficient cuckoo search MPPT algorithm based on a super-twisting sliding mode controller for partially shaded standalone photovoltaic system,” Sustainability, vol. 15, no. 12, pp. 9753, 2023. DOI: 10.3390/su15129753.
  • S. Krim, S. Gdaim, and M. F. Mimouni, “Robust direct torque control with super-twisting sliding mode control for an induction motor drive,” Complexity, vol. 2019, pp. 1–24, 2019. DOI: 10.1155/2019/7274353.
  • J. A. Burton and A. S. Zinober, “Continuous approximation of variable structure control,” Int. J. Syst. Sci., vol. 17, no. 6, pp. 875–885, 1986. DOI: 10.1080/00207728608926853.
  • Y. Shtessel, M. Taleb, and F. Plestan, “A novel adaptive-gain supertwisting sliding mode controller: methodology and application,” Automatica, vol. 48, no. 5, pp. 759–769, 2012. DOI: 10.1016/j.automatica.2012.02.024.
  • Y. Zahraoui et al., “Optimal tuning of fractional order sliding mode controller for PMSM speed using neural network with reinforcement learning,” Energies, vol. 16, no. 11, pp. 4353, 2023. DOI: 10.3390/en16114353.
  • B. Bouchiba, I. K. Bousserhane, M. K. Fellah, and A. Hazzab, “Artificial neural network sliding mode control for multi-machine web winding system,” Revue Roumaine des Sciences Techniques-Serie Electrotechnique et Energetique, vol. 62, no. 1, pp. 109–113, 2017.
  • F. Plestan, Y. Shtessel, V. Bregeault, and A. Poznyak, “New methodologies for adaptive sliding mode control,” Int. J. Control, vol. 83, no. 9, pp. 1907–1919, 2010. DOI: 10.1080/00207179.2010.501385.
  • J. Zhang, P. Shi, and Y. Xia, “Robust adaptive sliding-mode control for fuzzy systems with mismatched uncertainties,” IEEE Trans. Fuzzy Syst., vol. 18, no. 4, pp. 700–711, 2010.
  • J. Fei, Z. Wang, and Q. Pan, “Self-constructing fuzzy neural fractional-order sliding mode control of active power filter,” IEEE Trans. Neural Netw. Learn Syst., vol. 34, no. 12, pp. 10600–10611, 2022. DOI: 10.1109/TNNLS.2022.3169518.
  • Y. Zhao, H. Yu, and S. Wang, “An improved super-twisting high-order sliding mode observer for sensorless control of permanent magnet synchronous motor,” Energies, vol. 14, no. 19, pp. 6047, 2021. DOI: 10.3390/en14196047.
  • S. Di Gennaro, J. Rivera, and B. Castillo-Toledo, 2010. “Super-twisting sensorless control of permanent magnet synchronous motors,” 49th IEEE Conf. on Decision and Control (CDC), 15–17 December 2010 (pp. 4018–4023). Atlanta, GA, USA: IEEE.
  • S. Krim and M. F. Mimouni, “Design and Xilinx Virtex-field-programmable gate array for hardware in the loop of sensorless observer for direct torque control of induction motor drive second-order sliding mode control and model reference adaptive system–sliding mode,” Proc. Institut. Mech. Engineers, Part I: J. Syst. Control Eng., vol. 237, no. 5, pp. 839–869, 2022. DOI: 10.1177/09596518221138987.
  • Y. Krim, D. Abbes, S. Krim, and M. Faouzi Mimouni, “Power management and second-order sliding mode control for standalone hybrid wind energy with battery energy storage system,” Proc. Institut. Mech. Engineers, Part I: J. Syst. Control Eng., vol. 232, no. 10, pp. 1389–1411, 2018. DOI: 10.1177/0959651818784320.
  • B. Tian, J. Cui, H. Lu, L. Liu, and Q. Zong, “Attitude control of UAVs based on event-triggered supertwisting algorithm,” IEEE Trans. Ind. Inf., vol. 17, no. 2, pp. 1029–1038, 2021. DOI: 10.1109/TII.2020.2981367.
  • B. Brogliato, A. Polyakov, and D. Efimov, “The implicit discretization of the supertwisting sliding-mode control algorithm,” IEEE Trans. Automat. Contr., vol. 65, no. 8, pp. 3707–3713, 2020. DOI: 10.1109/TAC.2019.2953091.
  • L. Zhang, S. Laghrouche, M. Harmouche, and M. Cirrincione, 2017. “Super twisting control of linear induction motor considering end effects with unknown load torque,” 2017 American Control Conference (ACC), 24–26 May 2017 (pp. 911–916). Seattle, WA, USA: IEEE. DOI: 10.23919/ACC.2017.7963069.
  • U. Pérez-Ventura and L. Fridman, “Design of super-twisting control gains: a describing function based methodology,” Automatica, vol. 99, pp. 175–180, 2019. DOI: 10.1016/j.automatica.2018.10.023.
  • S. Krim and M. F. Mimouni, “Design of improved direct torque control based on a five level torque controller and a new Sugeno-Takagi fuzzy super-twisting controller applied to an induction machine,” Eng. Appl. Artif. Intell., vol. 126, pp. 106900, 2023. DOI: 10.1016/j.engappai.2023.106900.
  • K. Rao, D. J. Vaghela, and M. V. Gojiya, 2016. “Implementation of SPWM technique for 3-Φ VSI using STM32F4 discovery board interfaced with MATLAB,” 2016 IEEE 1st Int. Conf. on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 4–6 July 2016 (pp. 1–5). Delhi, India: IEEE. DOI: 10.1109/ICPEICES.2016.7853658.
  • S. Ozcira, N. Bekiroglu, and I. Senol, 2012. “Dynamic performance and analysis of direct torque control method based on DSP for PMSM drives,” 2012 Int. Conf. on Renewable Energy Research and Applications (ICRERA), 11–14 November 2012 (pp. 1–5). Nagasaki, Japan: IEEE. DOI: 10.1109/ICRERA.2012.6477342.
  • S. M. Cruz, H. A. Toliyat, and A. M. Cardoso, “DSP implementation of the multiple reference frames theory for the diagnosis of stator faults in a DTC induction motor drive,” IEEE Trans. Energy Convers., vol. 20, no. 2, pp. 329–335, 2005. DOI: 10.1109/TEC.2005.845531.
  • N. P. Nguyen, W. Kim, and J. Moon, “Super-twisting observer-based sliding mode control with fuzzy variable gains and its applications to fully-actuated hexarotors,” J. Franklin Inst., vol. 356, no. 8, pp. 4270–4303, 2019. DOI: 10.1016/j.jfranklin.2019.03.005.
  • S. Krim, S. Gdaim, A. Mtibaa, and M. F. Mimouni, “Control with high performances based DTC strategy: FPGA implementation and experimental validation,” EPE J., vol. 29, no. 2, pp. 82–98, 2019. DOI: 10.1080/09398368.2018.1548802.
  • E. Monmasson et al., “FPGAs in industrial control applications,” IEEE Trans. Ind. Inf., vol. 7, no. 2, pp. 224–243, 2011. DOI: 10.1109/TII.2011.2123908.
  • A. Guezmil et al., “Detecting inter-turn short-circuit fault in induction machine using high-order sliding mode observer: simulation and experimental verification,” J Control Autom. Electr. Syst., vol. 28, no. 4, pp. 532–540, 2017. DOI: 10.1007/s40313-017-0314-2.
  • M. Es-Saadi, H. Chaikhy, and M. Khafallah, “Implementation and investigation of an advanced induction machine field-oriented control strategy using a new generation of inverters based on dSPACE hardware,” Appl. Syst. Innov., vol. 5, no. 6, pp. 106, 2022. DOI: 10.3390/asi5060106.
  • H. Chaikhy, M. Khafallah, A. Saad, M. Es-Saadi, and K. Chikh, “Evaluation des performances des commandes vectorielles de la machine à induction,” Revue de Génie Industriel, vol. 6, pp. 23–32, 2011.
  • M. Benbouzid et al., “Second-order sliding mode control for DFIG-based wind turbines fault ride-through capability enhancement,” ISA Trans., vol. 53, no. 3, pp. 827–833, 2014. DOI: 10.1016/j.isatra.2014.01.006.
  • H. Feroura, F. Krim, B. Talbi, A. Laib, and A. Belaout, “Sensorless field oriented control of current source inverter fed induction motor drive,” Rev. Roum. Sci. Techn.—Électrotechn. Et Énerg, vol. 63, no. 1, pp. 100–105, 2018.
  • A. Levant, “Sliding order and sliding accuracy in sliding mode control,” Int. J. Control., vol. 58, no. 6, pp. 1247–1263, 1993. DOI: 10.1080/00207179308923053.
  • M. R. Mostafa, N. H. Saad, and A. A. El-Sattar, “Tracking the maximum power point of PV array by sliding mode control method,” Ain Shams Eng. J., vol. 11, no. 1, pp. 119–131, 2020. DOI: 10.1016/j.asej.2019.09.003.
  • M. M. Ali, W. Xu, A. K. Junejo, M. F. Elmorshedy, and Y. Tang, “One new super-twisting sliding mode direct thrust control for linear induction machine based on linear metro,” IEEE Trans. Power Electron., vol. 37, no. 1, pp. 795–805, 2022. DOI: 10.1109/TPEL.2021.3096066.
  • S. Krim, S. Gdaim, A. Mtibaa, and M. Faouzi Mimouni, “FPGA‐based real‐time implementation of a direct torque control with second‐order sliding mode control and input–output feedback linearisation for an induction motor drive,” IET Electr. Power Appl., vol. 14, no. 3, pp. 480–491, 2020. DOI: 10.1049/iet-epa.2018.5829.
  • R. T. Jadhav and V. S. Patil, “A real time hardware co-simulation of linearization of nonlinear sensor using ANFIS linearizer,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 3, pp. 2550–2556, 2020.
  • A. Nurettin and N. İnanç, “Design of a robust hybrid fuzzy super-twisting speed controller for induction motor vector control systems,” Neural Comput. Appl., vol. 34, no. 22, pp. 19863–19876, 2022. DOI: 10.1007/s00521-022-07519-4.
  • S. Krim, Y. Krim, and M. F. Mimouni, “Sensorless direct torque control based on nonlinear integral sliding mode controllers for an induction motor drive: experimental verification,” Proc. Institut. Mech. Engineers, Part I: J. Syst. Control Eng., vol. 235, no. 2, pp. 249–268, 2021. DOI: 10.1177/0959651820933733.
  • A. Devanshu, M. Singh, and N. Kumar, “Nonlinear flux observer-based feedback linearisation control of IM drives with ANN speed and flux controller,” Int. J. Electron., vol. 108, no. 1, pp. 139–161, 2021. DOI: 10.1080/00207217.2020.1765416.
  • B. Wang, T. Wang, Y. Yu, and D. Xu, “Second-order terminal sliding-mode speed controller for induction motor drives with nonlinear control gain,” IEEE Trans. Ind. Electron., vol. 70, no. 11, pp. 10923–10934, 2023. DOI: 10.1109/TIE.2022.3231248.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.