728
Views
2
CrossRef citations to date
0
Altmetric
Articles

Raising the bar for mathematically gifted students through creativity-based mathematics instruction

ORCID Icon &

References

  • Anderson, L. W., & Bourke, S. F. (2000). Assessing affective characteristics in the schools (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates, Publishers.
  • Basister, M. P., & Kawai, N. (2018). Japan’s educational practices for mathematically gifted students. International Journal of Inclusive Education, 22(11), 1213–1241. doi:10.1080/13603116.2017.1420252
  • Beghetto, R. A., & Kaufman, J. C. (2011). Teaching for creativity with disciplined improvisation. In R. K. Sawyer (Ed.), Structure and improvisation in creative teaching (pp. 94–109). Cambridge: Cambridge University Press.
  • Beghetto, R. A. (2017). Lesson unplanning: Toward transforming routine tasks into non-routine problems. ZDM Mathematics Education, 49, 987–993. doi:10.1007/s11858-017-0885-1
  • Beghetto, R. A., Kaufman, J. C., & Baer, J. (2014). Teaching for creativity in the classroom. New York, NY: Teachers College Press.
  • Bonotto, C., & Santo, L. D. (2015). On the relationship between problem posing, problem solving, and creativity in primary school. In F. M. Singer, N. F. Ellerton, & J. Cai (Eds.), Mathematical problem posing (pp. 103–123). New York, NY: Springer.
  • Brown, S. W., Renzulli, J. S., Gubbins, E. J., Siegle, D., Shang, W., & Cheng, C. (2005). Assumptions underlying the identification of gifted and talented students. Gifted Child Quarterly, 49(1), 68–79. doi:10.1177/001698620504900107
  • Chamberlin, S. A., & Mann, E. (in press). The relationship between affect and creativity in mathematics. Waco, TX: Prufrock Press.
  • Chamberlin, S. A., & Mann, E. L. (2014, July 27–30). A new model of creativity in mathematical problem solving. Proceedings of the International Group for Mathematical Creativity and Giftedness (pp. 35–40). Denver, CO, University of Denver. doi:10.1097/FTD.0b013e3182a04feb
  • Chamberlin, S. A., & Moon, S. M. (2005). Model-eliciting activities as a tool to develop and identify creatively gifted mathematicians. Journal of Secondary Gifted Education, 17(1), 37–47. doi:10.4219/jsge-2005-393
  • Chamberlin, S. A., Moore, A. D., & Parks, K. (2017). Norming the chamberlin affective instrument for mathematical problem solving with academically advanced students. British Journal of Educational Psychology, 87, 422–437. doi:10.1111/bjep.12157
  • Chamberlin, S. A., & Parks, K. (under review). A comparison of student affect after engaging in a mathematical modeling activity. International Journal of Education in Mathematics, Science andTechnology.
  • Chamberlin, S. A., & Powers, R. (2013). Assessing affect after mathematical problem solving tasks: Validating the chamberlin affective instrument for mathematical problem solving. Gifted Education International, 29, 69–85. doi:10.1177/0261429412440652
  • Chassell, L. M. (1916). Tests for originality. Journal of Educational Psychology, 7, 317–328. doi:10.1037/h0070310
  • Cropley, D. H. (2017). Creative products: Defining and measuring novel solutions. In J. A. Plucker (Ed.), Creativity and innovation (pp. 61–74). Waco, TX: Prufrock Academic Press.
  • DeBellis, V. A., & Goldin, G. A. (2006). Affect and meta-affect in mathematical problem solving: A representational perspective. Educational Studies in Mathematics, 63(2), 131–147. doi:10.1007/s10649-006-9028-2
  • Gilat, T., & Amit, M. (2013). Exploring young students’ creativity: The effect of model eliciting activities. PNA, 8(2), 51–59.
  • Gubbins, J., McCoach, B., Foreman, J., Gilson, C., Bruce-Davis, M., Rubenstein, D., … Waterman, C. (2013). What works in gifted education mathematics study: Impact of pre-differentiated and enriched curricula on general education teachers and their students. In J. K. Javits (Eds), National research center on the gifted and talented (pp. 1–279). Storrs: University of Connecticut; University of Virginia.
  • Haavold, P. Ø. (2018). An empirical investigation of a theoretical model for mathematical creativity. The Journal of Creative Behavior, 52, 226–239. doi:10.1002/jocb.145
  • Hadamard, J. (1945). Essay on the psychology of invention in the mathematical field. Princeton, NJ: Princeton University Press.
  • Higgins, J. L. (1970). Attitude changes in a mathematics library utilizing mathematics through a science approach. Journal for Research in Mathematics Education, 7, 43–56. doi:10.2307/748921
  • Hunsaker, S. L., & Callahan, C. M. (1995). Creativity and giftedness: Published instrument uses and abuses. Gifted Child Quarterly, 39(2), 110–114. doi:10.1177/001698629503900207
  • IBM. (2010). IBM 2010 global CEO study: Creativity selected as most crucial factor for future success. Retrieved from https://www.03.ibm.com/press/us/en/pressrelease/31670.wss
  • Imai, T. (2000). The influence of overcoming fixation in mathematics towards divergent thinking in open-ended mathematics problems on Japanese junior high school students. International Journal of Mathematical Education in Science and Technology, 31(2), 187–193. doi:10.1080/002073900287246
  • Irvine, J. (2017). A comparison of revised Bloom and Marzano’s new taxonomy of learning. Research in Higher Education Journal, 33, 1–16.
  • Jacobsen, L. J., Mistele, J., & Sriraman, B. (Eds.). (2013). Mathematics teacher education in the public interest: Equity and social justice. Charlotte, NC: Information Age.
  • Kaufman, J. C. (2015). Why creativity isn’t in IQ tests, why it matters, and why it won’t change anytime soon … probably. Journal of Intelligence, 3, 59–72. doi:10.3390/jintelligence3030059
  • Kim, H., Cho, S., & Ahn, D. (2003). Development of mathematical creative problem-solving ability test for identification of gifted in math. Gifted Education International, 18, 164–174. doi:10.1177/026142940301800206
  • Kitchen, R., & Berk, S. (2016). Education technology: An equity challenge to the common core. Journal for Research in Mathematics Education, 47(1), 3–16. doi:10.5951/jresematheduc.47.1.0003
  • Kozlowski, J. S., Chamberlin, S. A., & Mann, E. (2019). Factors that influence mathematical creativity. The Mathematics Enthusiast, 16(1–3), 505–540.
  • Kozlowski, J. S., & Si, S. (2019). Mathematical creativity: A vehicle to foster equity. Thinking Skills and Creativity, 33(100579), 1–8. doi:10.1016/j.tsc.2019.100579
  • Krutetskii, V. A. (1976). The psychology of mathematical abilities in school children. Chicago, IL: University of Chicago Press.
  • Leikin, R., & Lev, M. (2007). Multiple solution tasks as a magnifying glass for observation of mathematical creativity. In J.-H. Woo, H.-C. Lew, K.-S. Park, & D.-Y. Seo (Eds.), Proceedings of the 31st international conference for the psychology of mathematics education (Vol. 3, pp. 161–168). Seoul, Korea: The Korea Society of Educational Studies in Mathematics.
  • Leikin, R. (2009). Creativity in mathematics and the education of gifted students. Rotterdam: Sense Publ.
  • Leikin, R., & Lev, M. (2013). Mathematical creativity in generally gifted and mathematically excelling adolescents: What makes the difference? ZDM, 45(2), 183–197. doi:10.1007/s11858-012-0460-8
  • Leikin, R., & Sriraman, B. (Eds.). (2017). Introduction to interdisciplinary perspectives to creativity and giftedness. Basel, Switzerland: Springer, Cham.
  • Leonard, J., & Martin, D. B. (Eds.). (2013). The brilliance of Black children in mathematics: Beyond the numbers and toward new discourse. Charlotte, NC: Information Age.
  • Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In C. Janvier (Ed.), Problems of representation in the teaching and learning of mathematics (pp. 33–40). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. Kelly & R. Lesh (Eds.), The handbook of research design in mathematics and science education (pp. 591–646). Hillsdale, NJ: Lawrence Erlbaum and Associates.
  • Lev, M., & Leikin, R. (2017). The interplay between excellence in school matheamtics and general giftedness: Focusing on matheamtical creativity. In R. Leikin & B. Sriraman (Eds.), Introduction to interdisciplinary perspectives to creativity and giftedness (pp. 225–238). Basel, Switzerland: Springer, Cham.
  • Levenson, E., Swisa, R., & Tabach, M. (2018). Evaluating the potential of tasks to occasion mathematical creativity: Definitions and measurements. Research in Mathematics Education, 20(3), 273–294. doi:10.1080/14794802.2018.1450777
  • Liljedahl, P., Santos-Trigo, M., Malaspina, U., & Bruder, R. (2016). Problem solving in mathematics education. New York, NY: Springer Berlin Heidelberg.
  • Mann, E. L. (2005). Mathematical creativity and school mathematics: Indicators of mathematical creativity in middle school students (Doctoral dissertation), University of Connecticut. ProQuest Dissertations Publishing.
  • McLeod, D. B., & Adams, V. M. (1989). Affect and mathematical problem solving: A new perspective. New York, NY: Springer-Verlag.
  • Nadjafikhah, M., Yaftian, N., & Bakhshalizadeh, S. (2012). Mathematical creativity: Some definitions and characteristics. Procedia - Social and Behavioral Sciences, 31, 285–291. doi:10.1016/j.sbspro.2011.12.056
  • National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core state standards for mathematics. Washington, DC: Common Core State Standards Initiative.
  • Ninomiya, H., & Pusri, P. (2015). The study of open-ended approach in mathematics teaching using jigsaw method: A case study of the water beaker problem. Saitama Bulletin, 64(2), 11–22.
  • Plucker, J. A., Robinson, N. M., Greenspon, T. S., Feldhusen, J. F., McCoach, D. B., & Subotnik, R. F. (2004). It’s not how the pond makes you feel, but rather how high you can jump. American Psychologist, 59(4), 268–269. doi:10.1037/0003-066X.59.4.268
  • Poincaré, H. (1948). Science and method. New York, NY: Dover.
  • Reinholz, D., & Shah, N. (2018). Equity analytics: A methodological approach for quantifying participation patterns in mathematics classroom discourse. Journal for Research in Mathematics Education, 49(2), 140. doi:10.5951/jresematheduc.49.2.0140
  • Romberg, T., & Wilson, J. (1969). NLSMA reports, No. 7, the development of tests (Eric Document: D084112). Stanford, CA: School Mathematics Study Group.
  • Schoenfeld, A. H. (2016). An introduction to the teaching for robust understanding (TRU) framework. Berkeley, CA: Graduate School of Education.
  • Silver, E. A. (1997). Fostering creativity through construction rich in mathematical problem solving and problem posing. ZDM-International Reviews on Mathematical Education, 29, 75–80. doi:10.1007/s11858-997-0003-x
  • Singer, F. M., Sheffield, L. J., & Leikin, R. (2017). Advancements in research on creativity and giftedness in mathematics education: Introduction to the special issue. ZDM, 49(1), 5–12. doi:10.1007/s11858-017-0836-x
  • Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics? Journal of Secondary Gifted Education, 17(1), 20–36. doi:10.4219/jsge-2005-389
  • Sriraman, B. (2009). The characteristics of mathematical creativity. ZDM, 41(1–2), 13–27. doi:10.1007/s11858-008-0114-z
  • Sriraman, B., & Haavold, P. (2017). Creativity and giftedness in mathematics education: A pragmatic view. In J. Cai (Ed.), First compendium for research in mathematics education (pp. 908–916). Reston, VA: National Council of Teachers of Mathematics.
  • Sriraman, B. (2017). Mathematical creativity: Psychology, progress and caveats. ZDM, 49(7), 971–975. doi:10.1007/s11858-017-0886-0
  • Stanley, J. C. (1991). An academic model for educating the mathematically talented. Gifted Child Quarterly, 35(1), 36–42. doi:10.1177/001698629103500105
  • Stanley, J. C. (1996). In the beginning: The study of mathematically precocious youth. In C. P. Benbow & D. J. Lubinski (Eds.), Intellectual talent: Psychometric and social issues (pp. 225–235). Baltimore, MD: Johns Hopkins University Press.
  • Sternberg, R. J. (2017). ACCEL: A new model for identifying the gifted. Roeper Review, 39(3), 152–169. doi:10.1080/02783193.2017.1318658
  • Tabach, M., & Friedlander, A. (2013). School mathematics and creativity at the elementary and middle-grade levels: How are they related? ZDM, 45(2), 227–238. doi:10.1007/s11858-012-0471-5
  • Tyagi, T. K. (2017). Mathematical intelligence and mathematical creativity: A causal relationship. Creativity Research Journal, 29(2), 212–217. doi:10.1080/10400419.2017.1303317
  • United States Department of Education. (2015). Every Student Succeeds Act (ESSA). Retrieved from https://www.ed.gov/essa?src=policy
  • Walia, P. (2012). Achievement in relation to mathematical creativity of eighth grade students. Indian Streams Research Journal, 2(2), 1–4.
  • Wallas, G. (1926). The art of thought. London, UK: Jonathan Cape.
  • Wood, T., Merkel, G., & Uerkwitz, J. (1996). Creating a context for talking about mathematical thinking. Education of Mathematics, 4, 39–43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.