468
Views
4
CrossRef citations to date
0
Altmetric
Technical Papers

The Source Permeator System and Tritium Transport in the TEX PbLi Loop

ORCID Icon, ORCID Icon & ORCID Icon
Pages 77-94 | Received 04 Jan 2022, Accepted 10 Jun 2022, Published online: 21 Jul 2022

References

  • G. FEDERICI et al., “An Overview of the EU Breeding Blanket Design Strategy as an Integral Part of the DEMO Design Effort,” Fusion Eng. Des., 141, 30 (2019); https://doi.org/10.1016/j.fusengdes.2019.01.141.
  • B. G. HONG, “Overview of ITER TBM Program Objectives and Management,” Int. J. Energy Res., 42, 1, 4 (2018); https://doi.org/10.1002/er.3759.
  • L. M. GIANCARLI et al., “Overview of Recent ITER TBM Program Activities,” Fusion Eng. Des., 158, 111674 (2020); https://doi.org/10.1016/j.fusengdes.2020.111674.
  • P. W. HUMRICKHOUSE et al., “Vacuum Permeator Analysis for Extraction of Tritium from DCLL Blankets,” Fusion Sci. Technol., 68, 2, 295 (2015); https://doi.org/10.13182/FST14-941.
  • P. W. HUMRICKHOUSE et al., “Tritium Aspects of the Fusion Nuclear Science Facility,” Fusion Eng. Des., 135, 302 (2018); https://doi.org/10.1016/j.fusengdes.2017.04.099.
  • M. UTILI et al., “Tritium Extraction from HCLL/WCLL/DCLL PbLi BBs of DEMO and HCLL TBS of ITER,” IEEE Trans. Plasma Sci., 47, 2, 1464 (2019); https://doi.org/10.1109/TPS.2018.2886409.
  • D. RAPISARDA et al., “The European Dual Coolant Lithium Lead Breeding Blanket for DEMO: Status and Perspectives,” Nucl. Fusion, 61, 11, 115001 (2021); https://doi.org/10.1088/1741-4326/ac26a1.
  • J. AUBERT et al., “Status of the EU DEMO HCLL Breeding Blanket Design Development,” Fusion Eng. Des., 136, 1428 (2018); https://doi.org/10.1016/j.fusengdes.2018.04.133.
  • M. S. TILLACK et al., “Fusion Power Core Engineering for the ARIES-ST Power Plant,” Fusion Eng. Des., 65, 2, 215 (2003); https://doi.org/10.1016/S0920-3796(02)00305-8.
  • B. J. MERRILL et al., “Safety Assessment of the ARIES Compact Stellarator Design,” Fusion Sci. Technol., 54, 3, 838 (2008); https://doi.org/10.13182/FST08-5.
  • L. EL-GUEBALY et al., “Design and Evaluation of Nuclear System for ARIES-ACT2 Power Plant with DCLL Blanket,” Fusion Sci. Technol., 72, 17 (2017); https://doi.org/10.1080/15361055.2016.1273669.
  • A. DEL NEVO et al., “Recent Progress in Developing a Feasible and Integrated Conceptual Design of the WCLL BB in EUROfusion Project,” Fusion Eng. Des., 146, 1805 (2019); https://doi.org/10.1016/j.fusengdes.2019.03.040.
  • B. K. YADAV et al., “Design Updates for Helium Cooling System of Indian LLCB Blanket,” Fusion Eng. Des., 167, 112342 (2021); https://doi.org/10.1016/j.fusengdes.2021.112342.
  • B. GARCINUÑO et al., “The CIEMAT LiPb Loop Permeation Experiment,” Fusion Eng. Des., 146, 1228 (2019); https://doi.org/10.1016/j.fusengdes.2019.02.045.
  • M. UTILI et al., “TRIEX-II: An Experimental Facility for the Characterization of the Tritium Extraction Unit of the WCLL Blanket of ITER and DEMO Fusion Reactors,” Nucl. Fusion, 62, 6, 066036 (2022); https://doi.org/10.1088/1741-4326/ac5c74.
  • C. N. TAYLOR et al., “Conceptual Design for a Blanket Tritium Extraction Test Stand,” Fusion Sci. Technol., 77, 7–8, 829 (2021); https://doi.org/10.1080/15361055.2021.1880133.
  • B. GARCINUÑO et al., “Design of a Permeator Against Vacuum for Tritium Extraction from Eutectic Lithium-Lead in a DCLL DEMO,” Fusion Eng. Des., 117, 226 (2017); https://doi.org/10.1016/j.fusengdes.2016.06.036.
  • F. PAPA et al., “Engineering Design of a Permeator Against Vacuum Mock-Up with Niobium Membrane,” Fusion Eng. Des., 166, 112313 (2021); https://doi.org/10.1016/j.fusengdes.2021.112313.
  • A. AIELLO et al., “TRIEX Facility: An Experimental Loop to Test Tritium Extraction Systems from Lead Lithium,” Fusion Eng. Des., 82, 15, 2294 (2007); https://doi.org/10.1016/j.fusengdes.2007.07.037.
  • N. ALPY et al., “Hydrogen Extraction from Pb–17Li: Tests with a Packed Column,” Fusion Eng. Des., 39–40, 787 (1998); https://doi.org/10.1016/S0920-3796(98)00142-2.
  • B. GARCINUÑO et al., “Design of a System for Hydrogen Isotopes Injection into Lead-Lithium,” Fusion Eng. Des., 137, 427 (2018); https://doi.org/10.1016/j.fusengdes.2018.10.006.
  • H. FEUERSTEIN et al., “TRITEX. A Ferritic Steel Loop with Pb-15.8Li. Facility and Operation,” FZKA-6286, Forschungszentrum Karlsruhe GmbH Technik und Umwelt (1999).
  • L. CANDIDO et al., “Characterization of Pb-15.7Li Hydrogen Isotopes Permeation Sensors and Upgrade of Hyper- Quarch Experimental Device,” IEEE Trans. Plasma Sci., 48, 6, 1505 (2020); https://doi.org/10.1109/TPS.2020.2974937.
  • E. MAS DE LES VALLS et al., “Lead–Lithium Eutectic Material Database for Nuclear Fusion Technology,” J. Nucl. Mater., 376, 3, 353 (2008); https://doi.org/10.1016/j.jnucmat.2008.02.016.
  • D. MARTELLI et al., “Literature Review of Lead-Lithium Thermophysical Properties,” Fusion Eng. Des., 138, 183 (2019); https://doi.org/10.1016/j.fusengdes.2018.11.028.
  • F. REITER, “Solubility and Diffusivity of Hydrogen Isotopes in Liquid Pb 17Li,” Fusion Eng. Des., 14, 3–4, 207 (1991); https://doi.org/10.1016/0920-3796(91)90003-9.
  • A. POZIO et al., “Behaviour of Hydrogenated Lead–Lithium Alloy,” Int. J. Hydrog. Energy, 42, 2, 1053 (2017); https://doi.org/10.1016/j.ijhydene.2016.08.166.
  • Y. EDAO et al., “Experiments of Hydrogen Isotope Permeation, Diffusion and Dissolution in Li–Pb,” J. Nucl. Mater., 417, 1–3, 723 (2011); https://doi.org/10.1016/j.jnucmat.2010.12.126.
  • H. KATSUTA et al., “Hydrogen Solubility in Liquid Li17Pb83,” J. Nucl. Mater., 133–134, 167 (1985); https://doi.org/10.1016/0022-3115(85)90127-8.
  • Y. SHIBUYA et al., “Isothermal Release of Tritium from Neutron-Irradiated Li17Pb83,” J. Nucl. Mater., 150, 3, 286 (1987); https://doi.org/10.1016/0022-3115(87)90006-7.
  • S. A. STEWARD, “Review of Hydrogen Isotope Permeability Through Materials,” UCRL-53441, Lawrence Livermore National Laboratory (1983); https://doi.org/10.2172/5277693.
  • W. H. LINTON and T. K. SHERWOOD, “Mass Transfer from Solid Shapes to Water in Streamline and Turbulent Flow,” Chem. Eng. Prog., 46, 5, 258 (1950).
  • D. A. DONOHUE, “Heat Transfer and Pressure Drop in Heat Exchangers,” Ind. Eng. Chem., 41, 11, 2499 (1949); https://doi.org/10.1021/ie50479a030.
  • F. R. URGORRI et al., “Tritium Transport Modeling at System Level for the EUROfusion Dual Coolant Lithium-Lead Breeding Blanket,” Nucl. Fusion, 57, 11, 116045 (2017); https://doi.org/10.1088/1741-4326/aa7f9d.
  • T. F. FUERST et al., “Surface Effects on Deuterium Permeation Through Vanadium Membranes,” J. Membr. Sci., 620, 118949 (2021); https://doi.org/10.1016/j.memsci.2020.118949.
  • M. MALO et al., “Experimental Refutation of the Deuterium Permeability in Vanadium, Niobium and Tantalum,” Fusion Eng. Des., 146, 224 (2019); https://doi.org/10.1016/j.fusengdes.2018.12.025.
  • D. A. COONEY et al., “A Comparison of the Performance and Stability of Pd/BCC Metal Composite Membranes for Hydrogen Purification,” Int. J. Hydrog. Energy, 39, 33, 19009 (2014); https://doi.org/10.1016/j.ijhydene.2014.09.094.
  • S. TANAKA et al., “Hydrogen Permeation Through Niobium Membrane Contacting with Liquid Lithium,” J. Nucl. Mater., 97, 1–2, 59 (1981); https://doi.org/10.1016/0022-3115(81)90418-9.
  • A. CIAMPICHETTI et al., “Materials Selection and Design of a Hydrogen Measurement Device in Pb–17Li,” J. Nucl. Mater., 329–333, 1332 (2004); https://doi.org/10.1016/j.jnucmat.2004.04.254.
  • C. ALBERGHI et al., “Development of New Analytical Tools for Tritium Transport Modelling,” Fusion Eng. Des., 177, 113083 (2022); https://doi.org/10.1016/j.fusengdes.2022.113083.
  • J. CRANK, “The Mathematics of Diffusion,” Oxford University Press, London (1975).
  • M. SHIMADA, “Tritium Transport in Fusion Reactor Materials,” Comprehensive Nuclear Materials, 2nd ed., Vol. 6, Elsevier (2020); https://doi.org/10.1016/B978-0-12-803581-8.11754-0.
  • Y. HATANO et al., “Effects of Bulk Impurity Concentration on the Reactivity of Metal Surface: Sticking of Hydrogen Molecules and Atoms to Polycrystalline Nb Containing Oxygen,” J. Chem. Phys., 127, 204707 (2007); https://doi.org/10.1063/1.2804874.
  • I. ALI-KHAN et al., “The Rate of Hydrogen Release Out of Clean Metallic Surfaces,” J. Nucl. Mater., 76–77, 337 (1978); https://doi.org/10.1016/0022-3115(78)90167-8.
  • B. J. MERRILL et al., “Recent Development and Application of a New Safety Analysis Code for Fusion Reactors,” Fusion Eng. Des., 109–111, 970 (2016); https://doi.org/10.1016/j.fusengdes.2016.01.041.
  • L. L. HUMPHRIES et al., “MELCOR Computer Code Manuals,” SAND-2015-6692R, Sandia National Laboratories (2015); https://doi.org/10.2172/1433918.
  • G. R. LONGHURST, “TMAP7 User Manual,” INEEL/EXT-04-02352, Idaho National Laboratory (2008); https://doi.org/10.2172/952013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.