595
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Modeling of Transport Processes in Liquid-Metal Fusion Blankets: Past, Present, and Future

ORCID Icon
Pages 251-273 | Received 04 Apr 2022, Accepted 21 Aug 2022, Published online: 17 Oct 2022

References

  • M. ABDOU et al., “Blanket/First Wall Challenges and Required R&D on the Pathway to DEMO,” Fusion Eng. Des., 100, 2 (2015); https://doi.org/10.1016/j.fusengdes.2015.07.021.
  • L. BÜHLER et al., “Facilities, Testing Program and Modeling Needs for Studying Liquid Metal Magnetohydrodynamic Flows in Fusion Blankets,” Fusion Eng. Des., 100, 55 (2015); https://doi.org/10.1016/j.fusengdes.2014.03.078.
  • S. SMOLENTSEV et al., “Computational Predictive Capability for Fusion LM Systems Including LM-Plasma Coupling,” White Paper, APS-DPP Community Planning Process (2019); https://sites.google.com/pppl.gov/dpp-cpp/home (current as of Apr. 4, 2022).
  • C. E. KESSEL et al., “Overview of the Fusion Nuclear Science Facility, a Credible Break-in Step on the Path to Fusion Energy,” Fusion Eng. Des., 135, 236 (2018); https://doi.org/10.1016/j.fusengdes.2017.05.08.
  • S. MALANG et al., “Development of the Lead Lithium (DCLL) Blanket Concept,” Fusion Sci. Technol., 60, 249 (2011); https://doi.org/10.13182/FST10-212.
  • Bringing Fusion to the U.S. Grid, The National Academies Press, Washington, District of Columbia (2021); https://doi.org/10.17226/25991.
  • S. SMOLENTSEV et al., “MHD Thermohydraulics Analysis and Supporting R&D for DCLL Blanket in the FNSF,” Fusion Eng. Des., 135, 314 (2018); https://doi.org/10.1016/j.fusengdes.2017.06.017.
  • S. SMOLENTSEV, “Physical Background, Computations and Practical Issues of the Magnetohydrodynamic Pressure Drop in a Fusion Liquid Metal Blanket,” Fluids, 6, 3, 110 (2021); https://doi.org/10.3390/fluids6030110.
  • M.-J. NI et al., “A Current Density Conservative Scheme for Incompressible MHD Flows at a Low Magnetic Reynolds Number. Part I: On a Rectangular Collocated Grid System,” J. Comp. Phys., 227, 174 (2007); https://doi.org/10.1016/j.jcp.2007.07.025.
  • M.-J. NI et al., “A Current Density Conservative Scheme for Incompressible MHD Flows at a Low Magnetic Reynolds Number. Part II: On an Arbitrary Collocated Mesh,” J. Comp. Phys., 227, 205 (2007); https://doi.org/10.1016/j.jcp.2007.07.023.
  • P. HUANG et al., “A Comprehensive High-Performance Predictive Tool for Fusion Liquid Metal Hydromagnetics,” HPC-DOE-P2SBIR-FINAL-2017, HyPerComp Inc. (2017); https://www.osti.gov/biblio/1402053 (current as of Apr. 4, 2022).
  • L. CHEN et al., “Study on the Impacts of Pressure Equalization Slots on MHD Flow and Safety of FCI in DCLL Blanket,” Fusion Eng. Des., 122, 204 (2017); https://doi.org/10.1016/j.fusengdes.2017.08.016.
  • S. SMOLENTSEV et al., “Code-to-Code Comparison for a PbLi Mixed-Convection MHD Flow,” Fusion Sci. Technol., 76, 5, 653 (2020); https://doi.org/10.1080/15361055.2020.1751378.
  • S. SMOLENTSEV et al., “On the Role of Integrated Computer Modelling in Fusion Technology,” Fusion Eng. Des., 157, 111671 (2020); https://doi.org/10.1016/j.fusengdes.2020.111671.
  • V. BADALASSI et al., “Fusion Energy Reactor Models Integrator (FERMI),” ORNL proposal to ARPA-E and SC-FES # 2288-1507 under DE-FOA 0002288 “GAMOW” (2020).
  • B. N. SORBOM et al., “ARC: A Compact, High-Field, Fusion Nuclear Science Facility and Demonstration Power Plant with Demountable Magnets,” Fusion Eng. Des., 100, 378 (2015); https://www.sciencedirect.com/science/article/pii/S0920379615302337 (current as of Apr. 4, 2022).
  • S. SMOLENTSEV et al., “Dual-Coolant Lead-Lithium (DCLL) Blanket Status and R&D Needs,” Fusion Eng. Des., 100, 44 (2015); https://doi.org/10.1016/j.fusengdes.2014.12.031.
  • M. J. PATTISON et al., “Tritium Transport in Poloidal Flows of a DCLL Blanket,” Fusion Sci. Technol., 60, 809 (2015); https://doi.org/10.13182/FST10-309.
  • H. ZHANG, A. YING, and M. ABDOU, “Impact of Pressure Equalization Slot in Flow Channel Insert on Tritium Transport in a DCLL-Type Poloidal Duct,” Fusion Sci. Technol., 64, 651 (2013); https://www.tandfonline.com/doi/abs/10.13182/FST12-579.
  • J. A. SHERCLIFF, A Textbook of Magnetohydrodynamics, Pergamon Press, Oxford, United Kingdom (1965).
  • P. H. ROBERTS, An Introduction to Magnetohydrodynamics, Longmans, Green and Co., Harlow, United Kingdom (1967).
  • A. VATAZHIN, G. LYUBIMOV, and S. REGIRER, Magnetohydrodynamic Flows in Ducts, Nauka, Moscow, Russia (1970) ( in Russian).
  • H. BRANOVER, Magnetohydrodynamic Flows in Ducts, Halsted Press, New York (1978).
  • V. A. GLUKHIH, A. V. TANANAEV, and I. R. KIRILLOV, Magnetohydrodynamics in Power Engineering, Energoatomizdat, Moscow, Russia (1987) (in Russian).
  • R. MOREAU, Magnetohydrodynamics, Kluwer Academic Publishers (1990).
  • U. MÜLLER and L. BÜHLER, Magnetofluiddynamics in Channels and Containers, Springer, Berlin, Germany (2001).
  • P. A. DAVIDSON, An Introduction to Magnetohydrodynamics, Cambridge University Press, Cambridge, United Kingdom (2001).
  • Magnetohydrodynamics. Historical Evolution and Trends, S. MOLOKOV, R. MOREAU, and H. K. MOFFAT, Eds., Springer, Berlin, Germany (2007).
  • S. SMOLENTSEV et al., “MHD Thermofluid Issues of Liquid-Metal Blankets: Phenomena and Advances,” Fusion Eng. Des., 85, 1196 (2010); https://doi.org/10.1016/j.fusengdes.2010.02.038.
  • O. LIELAUSIS, “Liquid-Metal Magnetohydrodynamics,” At. Energy Rev., 13, 527 (1975).
  • S. MALANG et al., “Crucial Issues on Liquid Metal Blanket Design,” Fusion Eng. Des., 16, 95 (1991); https://doi.org/10.1016/0920-3796(91)90186-T.
  • I. R. KIRILLOV et al., “Present Understanding of MHD and Heat Transfer Phenomena for Liquid Metal Blankets,” Fusion Eng. Des., 27, 533 (1995); https://doi.org/10.1016/0920-3796(95)90171-X.
  • N. MORLEY et al., “Liquid Magnetohydrodynamics—Recent Progress and Future Directions for Fusion,” Fusion Eng. Des., 51–52, 701 (2000); https://doi.org/10.1016/S0920-3796(00)00197-6.
  • N. B. MORLEY, S. MALANG, and I. KIRILLOV, “Thermofluid Magnetohydrodynamic Issues for Liquid Breeders,” Fusion Sci. Technol., 47, 488 (2005); https://doi.org/10.13182/FST05-A733.
  • C. MISTRANGELO et al., “MHD Flow in Liquid Metal Blankets: Major Design Issues, MHD Guidelines and Numerical Analysis,” Fusion Eng. Des., 173, 112795 (2021); https://doi.org/10.1016/j.fusengdes.2021.112795.
  • O. ZIKANOV et al., “Mixed Convection in Pipe and Duct Flows with Strong Magnetic Fields,” Appl. Mech. Rev., 71, 010801 (2021); https://doi.org/10.1115/1.4049833.
  • C. MISTRANGELO et al., “MHD R&D Activities for Liquid Metal Blankets,” Energies, 14, 6640 (2021); https://doi.org/10.3390/en14206640.
  • S. SMOLENTSEV, R. MOREAU, and M. ABDOU, “Characterization of Key Magnetohydrodynamic Phenomena in PbLi Flows for the US DCLL Blanket,” Fusion Eng. Des., 83, 771 (2008); https://doi.org/10.1016/j.fusengdes.2008.07.023.
  • W. KRAUSS et al., “Precipitation Phenomena During Corrosion Testing in Forced-Convection Pb-15.7Li Loop PICOLO,” Fusion Eng. Des., 146, 1782 (2019); https://doi.org/10.1016/j.fusengdes.2019.03.034.
  • P. F. TORTORELLI, “Deposition Behavior of Ferrous Alloys in Molten Lead-Lithium,” Fusion Eng. Des., 14, 335 (1991); https://doi.org/10.1016/0920-3796(91)90017-K.
  • J. SANNIER et al., “Corrosion of Austenitic and Martensitic Stainless Steels in Flowing Pbl7Li Alloy,” Fusion Eng. Des., 14, 299 (1991); https://doi.org/10.1016/0920-3796(91)90013-G.
  • L. A. SEDANO, “Helium Bubble Cavitation Phenomena in Pb-15.7Li and Potential Impact on Tritium Transport Behavior in HCL Breeding Channels,” Informes Técnicos Ciemat, 1111, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (2007); https://www.osti.gov/etdeweb/servlets/purl/20930058 (current as of Apr. 4, 2022).
  • L. BATET, E. MAS DE LES VALLS, and L. A. SEDANO, “Mathematical Models for Tritium Permeation Analysis in Liquid Metal Flows with Helium Bubbles,” Fusion Eng. Des., 89, 1158 (2014); https://doi.org/10.1016/j.fusengdes.2014.04.031.
  • S. SMOLENTSEV, S. CUEVAS, and A. BELTRÁN, “Induced Electric Current-Based Formulation in Computations of Low Magnetic Reynolds Number Magnetohydrodynamic Flows,” J. Comput. Phys., 229, 1558 (2010); https://doi.org/10.1016/j.jcp.2009.10.044.
  • F. C. SCHULLER, “Disruptions in Tokamaks,” Plasma Phys. Control. Fusion, 37, A135 (1995); https://doi.org/10.1088/0741-3335/37/11A/009.
  • J. BLANCHARD and C. MARTIN, “Thermal and Electromagnetic Transients in Liquid Metal Surfaces of the FNSF,” Fusion Sci. Technol., 75, 918 (2019); https://doi.org/10.1080/15361055.2019.1602399.
  • C. KAWCZYNSKI, S. SMOLENTSEV, and M. ABDOU, “Characterization of the Lid-Driven Cavity Magnetohydrodynamic Flow at Finite Magnetic Reynolds Numbers Using Far-Field Magnetic Boundary Conditions,” Phys. Fluids, 30, 067103 (2018); https://doi.org/10.1063/1.5036775.
  • A. KHODAK et al., “Numerical Model of Dual-Coolant Lead-Lithium (DCLL) Blanket,” Fusion Eng. Des., 137, 124 (2018); https://doi.org/10.1016/j.fusengdes.2018.08.010.
  • A. KRAWCZYK and J. A. TEGOPOULOS, Numerical Modelling of Eddy Currents, Clarendon Press, Oxford, United Kingdom (1993).
  • S. SMOLENTSEV, “MHD Duct Flows Under Hydrodynamic ‘Slip’ Condition,” Theor. Comput. Fluid Dyn., 23, 557 (2009); https://doi.org/10.1007/s00162-009-0108-7.
  • A. SIEVERTS, “The Absorption of Gases by Metals,” Z. Metallkd., 21, 37 (1929).
  • S. SMOLENTSEV et al., “Numerical Study of Corrosion of Ferritic/Martensitic Steels in the Flowing PbLi With and Without a Magnetic Field,” J. Nucl. Mater., 432, 294 (2013); https://doi.org/10.1016/j.jnucmat.2012.08.027.
  • S. SUBRAMANIAM, “Lagrangian-Eulerian Methods for Multiphase Flows,” Prog. Energy Combust. Sci., 39, 215 (2013); https://doi.org/10.1016/j.pecs.2012.10.003.
  • D. A. DREW, “Mathematical Modeling of Two-Phase Flow,” Ann. Rev. Fluid Mech., 15, 261 (1983); https://doi.org/10.1146/annurev.fl.15.010183.001401.
  • K. TAIRA et al., “Modal Analysis of Fluid Flows: An Overview,” AIAA J., 55, 4013 (2017); https://doi.org/10.2514/1.J056060.
  • I. E. BUTSENIEKS et al., “Magnetohydrodynamic Flow in a Square Tube with Walls of Different Electrical Conductivity in an Oblique Transverse Magnetic Field,” Magnetohydrodynamics, 7, 335 (1971).
  • A. STERL, “Numerical Simulation of Liquid-Metal MHD Flows in Rectangular Ducts,” J. Fluid Mech., 216, 161 (1990); https://doi.org/10.1017/S0022112090000386.
  • S. SMOLENTSEV et al., “An Approach to Verification and Validation of MHD Codes for Fusion Applications,” Fusion Eng. Des., 100, 65 (2015); https://doi.org/10.1016/j.fusengdes.2014.04.049.
  • L. BÜHLER, “Magnetohydrodynamic Flows in Arbitrary Geometries in Strong Nonuniform Magnetic Fields—A Numerical Code for the Design of Fusion Reactor Blankets,” Fusion Technol., 27, 3 (1995); https://doi.org/10.13182/FST95-A30346.
  • S. SMOLENTSEV, N. MORLEY, and M. ABDOU, “Code Development for Analysis of MHD Pressure Drop Reduction in a Liquid Metal Blanket Using Insulation Technique Based on a Fully Developed Flow Model,” Fusion Eng. Des., 73, 83 (2005); https://doi.org/10.1016/j.fusengdes.2005.01.003.
  • D. KRASNOV, O. ZIKANOV, and T. BOECK, “Numerical Study of Magnetohydrodynamic Duct Flow at High Reynolds and Hartmann Numbers,” J. Fluid Mech., 704, 421 (2012); https://doi.org/10.1017/jfm.2012.256.
  • H. KOBAYASHI, “Large Eddy Simulation of Magnetohydrodynamic Turbulent Duct Flows,” Phys. Fluids, 20, 015102 (2008); https://doi.org/10.1063/1.2832779.
  • N. B. MORLEY et al., “MHD Simulations of Liquid Metal Flow through a Toroidally Oriented Manifold,” Fusion Eng. Des., 83, 1335 (2008); https://doi.org/10.1016/j.fusengdes.2008.04.010.
  • N. B. MORLEY et al., “Progress on the Modeling of Liquid Metal, Free Surface, MHD Flows for Fusion Liquid Walls,” Fusion Eng. Des., 72, 3 (2004); https://doi.org/10.1016/j.fusengdes.2004.07.013.
  • M.-J. NI et al., “Validation Strategies of HIMAG in Interfacial Flow Computation for Fusion Applications,” Fusion Eng. Des., 81, 1535 (2006); https://doi.org/10.1016/j.fusengdes.2005.09.053.
  • M.-J. NI et al., “Validation Case Results for 2D and 3D MHD Simulations,” Fusion Sci. Technol., 52, 587 (2007); https://doi.org/10.13182/FST07-A1552.
  • M. NARULA et al., “Exploring Liquid Metal Plasma Facing Component (PFC) Concepts—Liquid Metal Film Flow Behavior Under Fusion Relevant Magnetic Fields,” Fusion Eng. Des., 81, 1543 (2006); https://doi.org/10.1016/j.fusengdes.2005.08.071.
  • A. PATEL et al., “Validation of Numerical Solvers for Liquid Metal Flow in a Complex Geometry in the Presence of a Strong Magnetic Field,” Theor. Comput. Fluid Dyn., 32, 165 (2018); https://doi.org/10.1007/s00162-017-0446-9.
  • T. J. RHODES, S. SMOLENTSEV, and M. A. ABDOU, “Effect of the Length of the Poloidal Ducts on Flow Balancing in a Liquid Metal Blanket,” Fusion Eng. Des., 136, 847 (2018); https://doi.org/10.1016/j.fusengdes.2018.04.019.
  • T. J. RHODES, S. SMOLENTSEV, and M. ABDOU, “Magnetohydrodynamic Pressure Drop and Flow Balancing of Liquid Metal Flow in a Prototypic Fusion Blanket Manifold,” Phys. Fluids, 30, 057101 (2018); https://doi.org/10.1063/1.5026404.
  • S. SAHU and R. BHATTACHARYAY, “Validation of COMSOL Code for Analyzing Liquid Metal Magnetohydrodynamic Flow,” Fusion Eng. Des., 127, 151 (2018); https://doi.org/10.1016/j.fusengdes.2018.01.009.
  • Y. YAN, A. YING, and M. ABDOU, “Numerical Study of Magneto-Convection Flows in a Complex Prototypical Liquid-Metal Fusion Blanket Geometry,” Fusion Eng. Des., 159, 111688 (2020); https://doi.org/10.1016/j.fusengdes.2020.111688.
  • E. M. DE LES VALLS, “Development of a Simulation Tool for MHD Flows under Nuclear Fusion Conditions,” Technical University of Catalonia (2011); https://upcommons.upc.edu/handle/2117/95157 (current as of Apr. 4, 2022).
  • D. SUAREZ et al., “Liquid Metal MHD Flow Influence on Heat Transfer Phenomena in Fusion Reactor Blankets,” Fusion Eng. Des., 170, 112503 (2021); https://doi.org/10.1016/j.fusengdes.2021.112503.
  • A. KHODAK, “Numerical Analysis of 2-D and 3-D MHD Flows Relevant to Fusion Applications,” IEEE Trans. Plasma Sci., 45, 2561 (2017); https://doi.org/10.1109/TPS.2017.2734106.
  • A. TASSONE and G. CARUSO, “Computational MHD Analyses in Support of the Design of the WCLL TBM Breeding Zone,” Fusion Eng. Des., 170, 112535 (2021); https://doi.org/10.1016/j.fusengdes.2021.112535.
  • C. N. KIM, “A Liquid Metal Magnetohydrodynamic Duct Flow with Sudden Contraction in a Direction Perpendicular to a Magnetic Field,” Comput. Fluids, 108, 156 (2015); https://doi.org/10.1016/j.compfluid.2014.12.001.
  • F. URGORRI et al., “Magnetohydrodynamic and Thermal Analysis of PbLi Flows in Poloidal Channels with Flow Channel Insert for the EU-DCLL Blanket,” Nucl. Fusion, 58, 106001 (2018); https://doi.org/10.1088/1741-4326/aad299.
  • F. R. URGORRI, I. FERNÁNDEZ-BERCERUELO, and D. RAPISARDA, “Magneto-Convective Analyses of the PbLi Flow for the EU-WCLL Fusion Breeding Blanket,” Energies, 14, 6192 (2021); https://doi.org/10.3390/en14196192.
  • F. R. URGORRI et al., “The Influence of MHD Boundary Layers on Tritium Permeation in PbLi Flows for Fusion Breeding Blankets,” Int. J. Heat Mass Transfer, 181, 121906 (2021); https://doi.org/10.1016/j.ijheatmasstransfer.2021.121906.
  • P. K. SWAIN et al., “Thermofluid MHD Studies in a Model of Indian LLCB TBM at High Magnetic Field Relevant to ITER,” Fusion Eng. Des., 150, 111374 (2020); https://doi.org/10.1016/j.fusengdes.2019.111374.
  • P. K. SWAIN et al., “MHD Effects of Partition Plates on Thermofluid Performance of Indian Variant LLCB TBM for ITER,” Fusion Eng. Des., 164, 112193 (2021); https://doi.org/10.1016/j.fusengdes.2020.112193.
  • S. SMOLENTSEV et al., “MHD and Heat Transfer Considerations for the US DCLL Blanket for DEMO and ITER TBM,” Fusion Eng. Des., 83, 1788 (2008); https://doi.org/10.1016/j.fusengdes.2008.04.002.
  • S. SMOLENTSEV, N. MORLEY, and M. ABDOU, “MHD and Thermal Issues of the SiCf/SiC Flow Channel Insert,” Fusion Sci. Technol., 50, 107 (2006); https://doi.org/10.13182/FST06-A1226.
  • D. L. SMITH et al., “Blanket Comparison and Selection Study—Final Report,” ANL/FPP-84-1, Argonne National Laboratory (1984).
  • L. CHEN, S. SMOLENTSEV, and M. J. NI, “Toward Full Simulations for a Liquid Metal Blanket: MHD Flow Computations for a PbLi Blanket Prototype at Ha ∼ 104,” Nucl. Fusion, 60, 076003 (2020); https://doi.org/10.1088/1741-4326/ab8b30.
  • L. CHEN, S. SMOLENTSEV, and M. J. NI, “Toward Full Simulations for a Liquid Metal Blanket: Part 2. Computations of MHD Flows with Volumetric Heating for a PbLi Blanket Prototype at Ha ∼ 104 and Gr ∼ 1012,” Nucl. Fusion, 62, 026042 (2022); https://doi.org/10.1088/1741-4326/ac3fea.
  • Y. WU and FDS TEAM, “Conceptual Design and Testing Strategy of a Dual Functional Lithium-Lead Test Blanket Module in ITER and EAST,” Nucl. Fusion, 47, 1533 (2007); https://doi.org/10.1088/0029-5515/47/11/015.
  • Z.-H. LIU et al., “Effects of Magnetohydrodynamic Mixed Convection on Fluid Flow and Structural Stresses in the DCLL Blanket,” Int. J. Heat Mass Transfer, 135, 847 (2019); https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.019.
  • H. PETERSEN, “The Properties of Helium: Density, Specific Heats, Viscosity, and Thermal Conductivity at Pressures from 1 to 100 bar and from Room Temperature to About 1800 K,” Risoe-R No. 224, Risø National Laboratory, Denmark(1970); https://backend.orbit.dtu.dk/ws/files/52768509/ris_224.pdf (current as of Apr. 4, 2022).
  • N. I. KOLEV, Multiphase Flow Dynamics 2, Springer (2005).
  • C. M. ROWELL and K. Y. SZEMA, “CAD2Mesh—A Meshing Toolkit for Full Wave EM Solvers,” presented at the 31st Int. Review of Progress in Applied Computational Electromagnetics, Williamsburg, Virginia, March 22–26, 2015.
  • ANSYS ICEM CFD Tutorial Manual, ANSYS Inc. (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.