75
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Parametric Studies of CCRF in Ar on 1D Model: Effect of Pressure and Dielectric Layers

ORCID Icon
Pages 168-178 | Received 24 Apr 2022, Accepted 12 Oct 2022, Published online: 17 Jan 2023

References

  • Y. P. RAIZER, Gas Discharge Physics, Springer-Verlag, Berlin (1991).
  • Y. P. RAISER, Physics of Gas Discharge, Intellect nPublishing House, Dolgoprudny (2009).
  • Y. P. RAISER et al., High-Frequency Capacitive Discharge. Physics. Experimental Procedures. Attachments, MPhTI-Affiliated Publishing House, Moscow (1995).
  • M. S. MOKROV and Y. P. RAISER, “Application of Monte-Carlo Method Aimed to Determine Ionization Factors, Secondary Emission and current-voltage Characteristics of Townsend Discharge on Hydrogen,” Tech. Phys. Mag., 78, 47 (2008).
  • M. MEYYAPPAN and J. P. L. KRESKOVSKY, “Glow Discharge Simulation Through Solutions to the Moments of the Boltzmann Transport Equation,” J. Appl. Phys., 68, 1506 (1990); https://doi.org/10.1063/1.346652.
  • M. M. BECKER et al., “A Stabilized Finite Element Method for Modeling of Gas Discharges,” Comp. Phys. Com., 180, 1230 (2009); https://doi.org/10.1016/j.cpc.2009.02.001.
  • T. ALILI et al., “Investigations of Argon and Neon Abnormal Glow Discharges in the Presence of Metastable Atom Density with Fluid Model,” Can. J. Phys., 94, 731 (2016); https://doi.org/10.1139/cjp-2015-0692.
  • M. M. BECKER and D. LOFFHAGEN, “Enhanced Reliability of Drift-Diffusion Approximation for Electrons in Fluid Models for Nonthermal Plasmas,” AIP Adv., 3, 12108 (2013); https://doi.org/10.1063/1.4775771.
  • B. HECHELEF and A. BOUCHIKHI, “Identification of the Normal and Abnormal Glow Discharge Modes in a Neon-Xenon Gas Mixture at Low Pressure,” Plasma Sci. Tech., 20, 115401 (2018); https://doi.org/10.1088/2058-6272/aac693.
  • A. BOUCHIKHI, “Modeling of a DC Glow Discharge in a Neon-Xenon Gas Mixture at Low Pressure and with Metastable Atom Densities,” Plasma Sci. Tech., 19, 95403 (2017); https://doi.org/10.1088/2058-6272/aa74ad.
  • A. BOUCHIKHI, “Physical Proprieties of DC Glow Discharges in a Neon-Argon Gas Mixture,” Can. J. Phys., 96, 62 (2018); https://doi.org/10.1139/cjp-2017-0120.
  • A. BOUCHIKHI, “Nonlocal Ionization Theory and Secondary Electron Emission Coefficient: Application in Helium and Neon DC Microdischarge at High Pressure,” IEEE Trans. Plasma Sci., 9, 4260 (2019); https://doi.org/10.1109/TPS.2019.2933455.
  • T. SAMIR et al., “Effect of Driving Frequency on Electron Heating in Capacitively Coupled RF Argon Glow Discharges at Low Pressure,” Chin. Phys. B., 26, 115201 (2017); https://doi.org/10.1088/1674-1056/26/11/115201.
  • L. -L. ZHAO et al., “Effects of Gas Pressure on Plasma Characteristics in Dual Frequency Argon Capacitive Glow Discharges at Low Pressure by a Self-Consistent Fluid Model,” Chin. Phys. B., 26, 125201 (2017); https://doi.org/10.1088/1674-1056/26/12/125201.
  • Y. LIN and R. A. ADOMAITIS, “Simulation and Model Reduction Methods for an RF Plasma Glow Discharge,” J. Comp. Phys., 171, 731 (2001); https://doi.org/10.1006/jcph.2001.6808.
  • E. ESLAMI et al., “Numerical Investigation of the Effect of Driving Voltage Pulse Shapes on the Characteristics of Low-Pressure Argon Dielectric Barrier Discharge,” Plasma Phys. Rep., 41, 519 (2015); https://doi.org/10.1134/S1063780X15060021.
  • H. HÖFT et al., “Breakdown Characteristics in Pulsed-Driven Dielectric Barrier Discharges: Influence of the Pre-breakdown Phase due to Volume Memory Effects,” J. Phys. D: Appl. Phys., 47, 465206 (2014); 10.1088/0022-3727/47/46/465206.
  • S. PONDURI et al., “Fluid Modelling of CO2 Dissociation in a Dielectric Barrier Discharge,” J. Appl. Phys., 119, 93301 (2016); https://doi.org/10.1063/1.4941530.
  • D. LOFFHAGEN et al., “Impact of Hexamethyldisiloxane Admixtures on the Discharge Characteristics of a Dielectric Barrier Discharge in Argon for Thin Film Deposition,” Contrib. Plasma Phys., 58, 337 (2018); https://doi.org/10.1002/ctpp.201700060.
  • M. M. BECKER et al., “Analysis of Microdischarges in Asymmetric Dielectric Barrier Discharges in Argon,” J. Phys. D: Appl. Phys., 46, 355203 (2013); https://doi.org/10.1088/0022-3727/46/35/355203.
  • M. M. BECKER et al., “Advanced Fluid Modeling and PIC/MCC Simulations of Low-Pressure CCRF Discharges,” Plasma Sources Sci. Technol., 26, 44001 (2017); https://doi.org/10.1088/1361-6595/aa5cce.
  • Q. LIU et al., “Numerical Study of Effect of Secondary Electron Emission on Discharge Characteristics in Low Pressure Capacitive RF Argon Discharge,” Phys. Plasmas, 21, 83511 (2014); https://doi.org/10.1063/1.4894223.
  • T. SAMIR et al., “Study on Effect of Neutral Gas Pressure on Plasma Characteristics in Capacitive RF Argon Glow Discharges at Low Pressure by Fluid Modeling,” IEEE Trans. Plasma Sci., 46, 1738 (2018); https://doi.org/10.1109/TPS.2018.2818164.
  • W. V. GAENS and A. BOGAERTS, “Kinetic Modelling for an Atmospheric Pressure Argon Plasma Jet in Humid Air,” J. Phys. D Appl.Phys., 47, 79502 (2014); https://doi.org/10.1088/0022-3727/47/7/079502.
  • G. J. M. HAGELAAR and L. C. PITCHFORD, “Solving the Boltzmann Equation to Obtain Electron Transport Coefficients and Rate Coefficients for Fluid Models,” Plasma Sources Sci. Tech., 14, 722 (2005); https://doi.org/10.1088/0963-0252/14/4/011.
  • N. B. KOLOKOLOV et al., “Interaction Processes with Creation of Fast Electrons in the Low Temperature Plasma,” Phys. Scri., 50, 371 (1994); https://doi.org/10.1088/0031-8949/50/4/010.
  • H. KATORI and F. SHIMIZU, “Lifetime Measurement of the 1s5 Metastable State of Argon and Krypton with a Magneto-Optical Trap,” Phys. Rev. Lett., 70, 3545 (1993); https://doi.org/10.1103/PhysRevLett.70.3545.
  • L. VRIENS and A. H. M. SMEETS, “Cross-Section and Rate Formulas for Electron-Impact Ionization, Excitation, Deexcitation, and Total Depopulation of Excited Atoms,” Phys. Rev. A, 22, 940 (1980); https://doi.org/10.1103/PhysRevA.22.940.
  • J. H. KOLTS and D. W. SETSER, “Decay Rates of Ar(4s,3P 2), Ar(4 S′,3 P 0), Kr(5s,3 P2), and Xe(6s,3 P2) Atoms in Argon,” J. Chem. Phys., 68, 4848 (1978); https://doi.org/10.1063/1.435638.
  • A. BOUCHIKHI and A. HAMID, “2D DC Subnormal Glow Discharge in Argon,” Plasma Sci. Tech., 12, 59 (2010); https://doi.org/10.1088/1009-0630/12/1/13.
  • A. BOUCHIKHI, “Two-Dimensional Numerical Simulation of the DC Glow Discharge in the Normal Mode and with Einstein’s Relation of Electron Diffusivity,” Plasma Sci. Tech., 14, 965 (2012); https://doi.org/10.1088/1009-0630/14/11/04.
  • G. J. M. HAGELAAR et al., “Modeling of the Microdischarges in Plasma Addressed Liquid Crystal Displays,” J. Appl. Phys., 88, 2252 (2000); https://doi.org/10.1063/1.1287529.
  • V. E. GOLANT et al., Fundamentals of Plasma Physics, Wiley, New York (1980).
  • D. L. SCHARFETTER and H. K. GUMMEL, “Large-Signal Analysis of a Silicon Read Diode Oscillator,” IEEE Trans. Elec. Dev., 16, 64 (1969); https://doi.org/10.1109/T-ED.1969.16566.
  • A. BOUCHIKHI, “Proposition of a New Geometry of the Electrodes in a Particular Discharge,” Indian J. Phys., 94, 353 (2020); https://doi.org/10.1007/s12648-019-01452-4.
  • A. BOUCHIKHI, “Parametric Study on the DC Microdischarge in a 90%Helium–10%Xenon Gas Mixture at Intermediate Pressure,” Indian J. Phys., 96, 1443 (2022); https://doi.org/10.1007/s12648-021-02070-9.
  • D. P. LYMBEROPOULOS and D. J. ECONOMOU, “Fluid Simulations of Glow Discharges: Effect of Metastable Atoms in Argon,” J. Appl. Phys., 73, 3668 (1993); https://doi.org/10.1063/1.352926.
  • S. K. PARK and D. J. ECONOMOU, “Parametric Study of a Radio‐Frequency Glow Discharge Using a Continuum Model,” J. Appl. Phys., 68, 4888 (1990); https://doi.org/10.1063/1.346122.
  • M. MEYYAPPAN and T. R. GOVINDAN, “Radio Frequency Discharge Modeling: Moment Equations Approach,” J. Appl. Phys., 74, 2250 (1993); https://doi.org/10.1063/1.354708.
  • S. W. HWANG et al., “Effect of Electron Monte Carlo Collisions on a Hybrid Simulation of a Low-Pressure Capacitively Coupled Plasma,” Plasma Sources Sci. Tech., 23, 65040 (2014); https://doi.org/10.1088/0963-0252/23/6/065040.
  • M. SURENDRA and D. VENDER, “Collisionless Electron Heating by Radio-Frequency Plasma Sheaths,” Appl. Phys. Lett., 65, 153 (1994); https://doi.org/10.1063/1.112656.
  • M. SURENDRA et al., “Self Consistent DC Glow-Discharge Simulations Applied to Diamond Film Deposition Reactors,” J. Appl. Phys., 71, 5189 (1992); https://doi.org/10.1063/1.350575.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.