1,971
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Advancing Methods for Fusion Neutronics: An Overview of Workflows and Nuclear Analysis Activities at UKAEA

ORCID Icon, ORCID Icon, , , , ORCID Icon, , , , , , , ORCID Icon, ORCID Icon, , , & show all
Pages 1008-1022 | Received 02 Aug 2022, Accepted 26 Oct 2022, Published online: 21 Feb 2023

References

  • “ Spherical Tokamak for Energy Production,” United Kingdom Atomic Energy Authority (2022); https://step.ukaea.uk/.
  • M. COLEMAN and S. MCINTOSH, “BLUEPRINT: A Novel Approach to Fusion Reactor Design,” Fusion Eng. Des., 139, 26, 26 (2019); https://doi.org/10.1016/j.fusengdes.2018.12.036.
  • J. MORRIS et al., “Preparing Systems Codes for Power Plant Conceptual Design,” Nucl. Fusion, 61, 11, 116020 (2021); https://doi.org/10.1088/1741-4326/ac18dd.
  • F. FRANZA et al., “MIRA: A Mpulti-hysics Approach to Designing a Fusion Power Plant,” Nucl. Fusion, 62, 7, 076042 (2022); https://doi.org/10.1088/1741-4326/ac6433.
  • P. K. ROMANO et al., “OpenMC: A State-of-the-Art Monte Carlo Code for Research and Development,” Ann. Nucl. Energy, 82, 90 (2015); https://doi.org/10.1016/j.anucene.2014.07.048.
  • J. LEPPÄNEN et al., “The Serpent Monte Carlo Code: Status, Development and Applications in 2013,” Ann. Nucl. Energy, 82, 142 (2015); https://doi.org/10.1016/j.anucene.2014.08.024.
  • Y. WU et al., “CAD-Based Monte Carlo Program for Integrated Simulation of Nuclear System SuperMC,” Ann. Nucl. Energy, 82, 161 (2015); https://doi.org/10.1016/j.anucene.2014.08.058.
  • L. LU, Y. QIU, and U. FISCHER, “Improved Solid Decomposition Algorithms for the CAD-to-MC Conversion Tool McCad,” Fusion Eng. Des., 124, 1269 (2017); https://doi.org/10.1016/j.fusengdes.2017.02.040.
  • J. GOORLEY, “Initial MCNP6 Release Overview—MCNP6 Version 1.0,” LA-UR-13-22934, Los Alamos National Laboratory (2013).
  • S. W. MOSHER et al., “ADVANTG: An Automated Variance Reduction Parameter Generator,” ORNL/TM-2013/416 Rev. 1, Oak Ridge National Laboratory (2015).
  • A. DAVIS and A. TURNER, “Comparison of Global Variance Reduction Techniques for Monte Carlo Radiation Transport Simulations of ITER,” Fusion Eng. Des., 9, 86, 2698 (2011); https://doi.org/10.1016/j.fusengdes.2011.01.059.
  • B. COLLING et al., “Neutronics Analysis for Integration of ITER Diagnostics Port EP10,” Fusion Eng. Des., 109-111, 1109 (2016); https://doi.org/10.1016/j.fusengdes.2016.01.013.
  • T. EADE et al., “Movement of Active Components in the Shutdown Dose Rate Analysis of the ITER Neutral Beam Injectors,” Fusion Eng. Des., 98–99, 2130 (2015); https://doi.org/10.1016/j.fusengdes.2014.12.022.
  • A. DAVIS and A. TURNER, “Application of Novel Global Variance Reduction Methods to Fusion Radiation Transport Problems,” Int. Conf. Math. Comput. Methods Appl. Nucl. Sci. Eng., 48, 9 (2011); https://inis.iaea.org/search/search.aspx?orig_q=RN:48022314.
  • A. DAVIS and R. PAMPIN, “Benchmarking the MCR2S System for High-Resolution Activation Dose Analysis in ITER,” Fusion Eng. Des., 85, 1, 87 (2010); https://doi.org/10.1016/j.fusengdes.2009.07.002.
  • J.-C. SUBLET et al., “FISPACT-II: An Advanced Simulation System for Activation, Transmutation and Material Modelling,” Nucl. Data Sheets, 139, 77, 77 (2017); https://doi.org/10.1016/j.nds.2017.01.002.
  • “ Welcome to pypact’s Documentation!,” United Kingdom Atomic Energy Authority (2019); https://pypact.readthedocs.io/en/latest/index.html.
  • “ UKAEA/SpaceClaim_API_NeutronicsTools,” United Kingdom Atomic Energy Authority (2019); https://github.com/ukaea/SpaceClaim_API_NeutronicsTools.
  • “ Stainless Steel Pipe,” ASME B36.19M-2004, American Society of Mechanical Engineers (2004).
  • M. DE PIETRI et al., “Integral Modelling of the ITER Cooling Water Systems Radiation Source for Applications Outside of the Bio-Shield,” Fusion Eng. Des., 171, 112575 (2021); https://doi.org/10.1016/j.fusengdes.2021.112575.
  • “F4E,” Fusion for Energy (2019); https://github.com/Radiation-Transport.
  • D. VALENZA et al., “Proposal of Shutdown Dose Estimation Method by Monte Carlo Code,” Fusion Eng. Des., 55, 4, 411 (2001); https://doi.org/10.1016/S0920-3796(01)00188-0.
  • P. SAUVAN et al., “D1SUNED System for the Determination of Decay Photon Related Quantities,” Fusion Eng. Des., 151, 111399 (2020); https://doi.org/10.1016/j.fusengdes.2019.111399.
  • R. VILLARI et al., “Shutdown Dose Rate Assessment with the Advanced D1S Method: Development, Applications and Validation,” Fusion Eng. Des., 89, 9, 2083 (2014); https://doi.org/10.1016/j.fusengdes.2014.01.071.
  • T. EADE, S. BRADNAM, and P. KANTH, “A New Novel-1-Step Shutdown Dose Rate Method Combining Benefits from the Rigorous-2-Step and Direct-1-Step Methods,” Fusion Eng. Des., 181, 113213 (2022); https://doi.org/10.1016/j.fusengdes.2022.113213.
  • M. LOUGHLIN, “Conclusions of Shutdown Dose Rate Benchmark Study,” ITER D 6593RF v1.0, 6th ITER Neutronics Meeting, Hefei, China, 2011.
  • “SINBAD—Radiation Shielding Benchmark Experiments,” Ann. Nucl. Energy, 159, 108254, (2021); https://doi.org/10.1016/j.anucene.2021.108254.
  • A. VALENTINE et al., “Benchmarking of Emergent Radiation Transport Codes for Fusion Neutronics Applications,” Fusion Eng. Des., 180, 113197 (2022); https://doi.org/10.1016/j.fusengdes.2022.113197.
  • A. VALENTINE et al., “Benchmarking of the Serpent 2 Monte Carlo Code for Fusion Neutronics Applications,” PHYSOR 2020 Conf. Proc., 247, 04015 (2020).
  • A. TURNER, “Investigations into Alternative Radiation Transport Codes for ITER Neutronics Analysis,” Trans. Am. Nucl. Soc., 116, 17, 251 (2017).
  • A. TURNER et al., “Applications of Serpent 2 Monte Carlo Code to ITER Neutronics Analysis,” Fusion Sci. Technol., 74, 4, 315 (2018); https://doi.org/10.1080/15361055.2018.1489660.
  • T. EADE et al., “Shutdown Dose Rate Benchmarking Using Modern Particle Transport Codes,” Nucl. Fusion, 60, 5, 056024 (2020); https://doi.org/10.1088/1741-4326/ab8181.
  • A. VALENTINE, R. WORRALL, and J. LEPPÄNEN, “Investigation of Novel Weight Window Methods in Serpent 2 for Fusion Neutronics Applications,” Fusion Eng. Des., 178, 113090 (2022); https://doi.org/10.1016/j.fusengdes.2022.113090.
  • T. TAUTGES et al., “Acceleration Techniques for Direct Use of CAD-Based Geometries in Monte Carlo Radiation Transport,” International Conference on Advances in Mathematics, Computational Methods, and Reactor Physics, Saratoga Springs, New York, May 3–7, 2009.
  • R. PAMPIN et al., “Developments and Needs in Nuclear Analysis of Fusion Technology,” Fusion Eng. Des., 88, 6–8, 454 (2013); https://doi.org/10.1016/j.fusengdes.2013.03.049.
  • J. SHIMWELL et al., “The Paramak: Automated Parametric Geometry Construction for Fusion Reactor Designs,” F1000Research, 10:27 (2021); https://doi.org/10.12688/f1000research.28224.1.
  • J. LEPPÄNEN, “Response Matrix Method–Based Importance Solver and Variance Reduction Scheme in the Serpent 2 Monte Carlo Code,” Nucl. Technol., 205, 11, 1416 (2019); https://doi.org/10.1080/00295450.2019.1603710.
  • Y. HU et al., “Implementation and Benchmarking of an Automatic Global Variance Reduction Method on OpenMC,” Fusion Eng. Des., 173, 112829 (2021); https://doi.org/10.1016/j.fusengdes.2021.112829.
  • A. DAVIS, S. LILLEY, and J. SHIMWELL, “csg2csg: A Tool to Assist Validation & Verification,” Eur. Phys. J. Web of Conf., 247, 04012 (2021); https://doi.org/10.1051/epjconf/202124704012.
  • D. TILLEY, H. WELLER, and C. CHEVES, “Energy Levels of Light Nuclei A = 16–17,” Nucl. Phys. A, 564, 1, 1 (1993); https://doi.org/10.1016/0375-9474(93)90073-7.
  • C. NOBS et al., “Computational Evaluation of N-16 Measurements for a 14 MeV Neutron Irradiation of an ITER First Wall Component with Water Circuit,” Fusion Eng. Des., 159, 111743 (2020); https://doi.org/10.1016/j.fusengdes.2020.111743.
  • T. BERRY et al., “Integration of Fluid Dynamics into Activation Calculations for Fusion,” Fusion Eng. Des., 173, 112894 (2021); https://doi.org/10.1016/j.fusengdes.2021.112894.
  • H. WELLER et al., “A Tensorial Approach to CFD Using Object Oriented Techniques,” Comput. Phys., 12, 6, 620 (1998); https://doi.org/10.1063/1.168744.
  • F. ANDREOLI et al., “Comparison Between Measurement and Calculations for a 14 MeV Neutron Water Activation Experiment,” EPJ Web Conf., 239, 21002 (2020); https://doi.org/10.1051/epjconf/202023921002.
  • C. MORENO CARRERO, F. CAU, and R. PAMPIN, “Radio-Species Transport Model for Coupled Fluid Dynamics-Neutron Activation Calculations,” Fusion Eng. Des., 181, 113171 (2022); https://doi.org/10.1016/j.fusengdes.2022.113171.
  • A. ŽOHAR et al., “Analysis of Irradiation Experiments with Activated Water Radiation Source at the JSI TRIGA Research Reactor,” Fusion Eng. Des., 161, 111946 (2020); https://doi.org/10.1016/j.fusengdes.2020.111946.
  • L. PACKER et al., “Status of ITER Material Activation Experiments at JET,” Fusion Eng. Des., 124, 1150 (2017); https://doi.org/10.1016/j.fusengdes.2017.01.037.
  • L. W. PACKER et al., “Activation of ITER Materials in JET: Nuclear Characterisation Experiments for the Long-Term Irradiation Station,” Nucl. Fusion, 58, 9, 096013 (2018); https://doi.org/10.1088/1741-4326/aacca0.
  • L. W. PACKER et al., “Technological Exploitation of the JET Neutron Environment: Progress in ITER Materials Irradiation and Nuclear Analysis,” Nucl. Fusion, 61, 11, 116057 (2021); https://doi.org/10.1088/1741-4326/ac2a6b.
  • L. W. PACKER et al., “UK Fusion Technology Experimental Activities at the ASP 14 MeV Neutron Irradiation Facility,” Fusion Eng. Des., 87, 5–6, 662 (2012); https://doi.org/10.1016/j.fusengdes.2012.01.044.
  • L. W. PACKER et al., “Integral Cross Section Measurements Around 14 MeV for Validation of Activation Libraries,” Nucl. Data Sheets, 119, 173 (2014); https://doi.org/10.1016/j.nds.2014.08.048.
  • L. W. PACKER et al., “A Comparison of Oxide Decay Heat Simulations and Nuclear Data Libraries with Fusion Irradiation Experiments,” EPJ Web of Conf., 247, 09011, EDP Sciences (2021).
  • T. STAINER et al., “14 MeV Neutron Irradiation Experiments-Gamma Spectroscopy Analysis and Validation Automation,” EPJ Web of Conf., 247, 09010, EDP Sciences (2021).
  • M. ANGELONE et al., “Measurement of Delayed Neutron Emission from Water Activated by 14 MeV Neutrons in a FW Mock-up of ITER,” Fusion Eng. Des., 160, 111998 (2020); https://doi.org/10.1016/j.fusengdes.2020.111998.
  • M. ANGELONE et al., “Neutronics Experiments, Radiation Detectors and Nuclear Techniques Development in the EU in Support of the TBM Design for ITER,” Fusion Eng. Des., 96, 2 (2015).
  • M. SAVVA et al., “VERDI Detector Benchmark Experiment at the ENEA 14 MeV Frascati Neutron Generator,” Fusion Eng. Des., 146, 1877 (2019); https://doi.org/10.1016/j.fusengdes.2019.03.055.
  • L. W. PACKER et al., “Neutron Detection Technologies and Measurement Challenges at JET and ITER,” IAEA TECDOC SERIES 313, International Atomic Energy Agency (2020).
  • I. E. STAMATELATOS et al., “Novel Neutron Activation Detector for Fusion,” IAEA TECDOC SERIES 301, International Atomic Energy Agency (2020).
  • C. R. NOBS et al., “Neutron Spectrum Unfolding for the Development of a Novel Neutron Detector for Fusion,” Fusion Eng. Des., 146, 2658 (2019); https://doi.org/10.1016/j.fusengdes.2019.04.074.
  • L. W. PACKER et al., “Backwards Extrapolation Activation Diagnostics and Their Dynamic Range for Pulsed Neutron Source Measurements,” Fusion Eng. Des., 160, 111923 (2020); https://doi.org/10.1016/j.fusengdes.2020.111923.
  • R. WORRALL et al., “The Development, Testing and Comparison of Unfolding Methods in SPECTRA-UF for Neutron Spectrometry,” Fusion Eng. Des., 161, 112038 (2020); https://doi.org/10.1016/j.fusengdes.2020.112038.