2,785
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Targeting a Versatile Actuator for EU-DEMO: Real Time Monitoring of Pellet Delivery to Facilitate Burn Control

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 26-37 | Received 14 Oct 2022, Accepted 06 Mar 2023, Published online: 11 May 2023

References

  • F. JANKY et al., “Kinetic Control,” Proc. 5th IAEA DEMO Programme Workshop, Daejeon, Korea, May 2018, International Atomic Energy Agency (2018).
  • P. T. LANG et al., “Optimizing the EU-DEMO Pellet Fuelling Scheme,” Fusion Eng. Des., 156, 111591 (2020); https://doi.org/10.1016/j.fusengdes.2020.111591.
  • T. BLANKEN et al., “Model-Based Real-Time Plasma Electron Density Profile Estimation and Control on ASDEX Upgrade and TCV,” Fusion Eng. Des., 147, 111211 (2019); https://doi.org/10.1016/j.fusengdes.2019.05.030.
  • P. T. LANG et al., “Actuator Development Step by Step: Pellet Particle Flux Control for Single- and Multiple-Source Systems,” Fusion Sci. Technol., 78, 1 (2022); https://doi.org/10.1080/15361055.2021.1940034.
  • C. ANDELFINGER et al., “A New Centrifuge Pellet Injector for Fusion Experiments,” Rev. Sci. Instrum., 64, 4, 983 (1993); https://doi.org/10.1063/1.1144101.
  • M. MARASCHEK et al., “Path-Oriented Early Reaction to Approaching Disruptions in ASDEX Upgrade and TCV in View of the Future Needs for ITER and DEMO,” Plasma Phys. Control. Fusion, 60, 01447 (2018); https://doi.org/10.1088/1361-6587/aa8d05.
  • B. PLOECKL et al., “The Enhanced High Speed Inboard Pellet Fuelling System at ASDEX Upgrade,” Fusion Eng. Des., 88, 1059 (2013); https://doi.org/10.1016/j.fusengdes.2012.12.025.
  • A. KRIMMER et al., “Pellet Monitoring Diagnostic System,” EFDA_D_2PJA3U, EUROfusion.
  • B. PLOECKL et al., “Targeting a Versatile Actuator for EU-DEMO: Novel Control Scheme for Multisource Pellet Injector,” Fusion Sci. Technol., 77, 199 (2021); https://doi.org/10.1080/15361055.2020.1864172.
  • P. T. LANG et al., “H-Mode Confinement in the Pellet-Enforced High-Density Regime of the All-Metal-Wall Tokamak ASDEX Upgrade,” Nucl. Fusion, 60, 092003 (2020); https://doi.org/10.1088/1741-4326/ab6ea9.
  • R. PINTELON and J. SCHOUKENS, System Identification: A Frequency Domain Approach, 2nd ed., Wiley, New York (2012).
  • J. T. W. KOENDERS et al., “Systematic Extraction of a Control-Oriented Model from Perturbative Experiments and SOLPS-ITER for Emission Front Control in TCV,” Nucl. Fusion, 62, 066025 (2022); https://doi.org/10.1088/1741-4326/ac5b8c.
  • T. RAVENSBERGEN et al., “Real-Time Feedback Control of the Impurity Emission Front in Tokamak Divertor Plasmas,” Nat. Commun., 12, 1105 (2021); https://doi.org/10.1038/s41467-021-21268-3.
  • T. O. S. J. BOSMAN et al., “Model-Based Electron Density Profile Estimation and Control, Applied to ITER,” J. Phys. Commun., 5, 115015 (2021); https://iopscience.iop.org/article/10.1088/2399-6528/ac3547.
  • G. DERKS et al., Plasma Phys. Control. Fusion, 64, 125013 (2022); https://iopscience.iop.org/article/10.1088/1361-6587/ac9dbd.
  • T. O. S. J. BOSMAN et al. “Overview and results of the system identification experiments for detachment and MIMO density control at ASDEX Upgrade,” (2023), in preparation.
  • M. VAN BERKEL et al., “Correcting for Non-Periodic Behaviour in Perturbative Experiments: Application to Heat Pulse Propagation and Modulated Gas-Puff Experiments,” Plasma Phys. Control. Fusion, 62, 094001 (2020); https://doi.org/10.1088/1361-6587/ab9eaa.
  • C. GLISS, EUROfusion Fusion Technology Department, Personal Communication (Apr. 25, 2022).
  • B. PLOECKL et al., “Matter Injection in EU-DEMO: The Preconceptual Design,” Fusion Sci. Technol., 77, 266 (2021); https://doi.org/10.1080/15361055.2021.1903784.
  • P. T. LANG et al., “Considerations on the DEMO Pellet Fuelling System,” Fusion Eng. Des., 96–97, 123 (2015); https://doi.org/10.1016/j.fusengdes.2015.04.014.
  • T. SZEPESI et al., “Volume Measurement of Cryogenic Deuterium Pellets by Bayesian Analysis of Single Shadowgraphy Images,” Rev. Sci. Instrum., 79, 3, 033501 (2008); https://doi.org/10.1063/1.2870089.
  • P. T. LANG et al., “ELM Pace Making and Mitigation by Pellet Injection in ASDEX Upgrade,” Nucl. Fusion, 44, 665 (2004); https://doi.org/10.1088/0029-5515/44/5/010.
  • M. LENNHOLM et al., “Statistical Assessment of ELM Triggering by Pellets on JET,” Nucl. Fusion, 61, 36035 (2021); https://doi.org/10.1088/1741-4326/abd861.
  • L. R. BAYLOR et al., “Reduction of Edge-Localized Mode Intensity Using High-Repetition-Rate Pellet Injection in Tokamak H-Mode Plasmas,” Phys. Rev. Lett., 110, 24, 245001 (2013); https://doi.org/10.1103/PhysRevLett.110.245001.
  • M. G. DUNNE et al., “The Role of the Density Profile in the ASDEX-Upgrade Pedestal Structure,” Plasma Phys. Control. Fusion, 59, 014017 (2017); https://doi.org/10.1088/0741-3335/59/1/014017.
  • A. KALLENBACH et al., “Developments Towards an ELM-Free Pedestal Radiative Cooling Scenario Using Noble Gas Seeding in ASDEX Upgrade,” Nucl. Fusion, 61, 016002 (2021); https://doi.org/10.1088/1741-4326/abbba0.
  • A. KALLENBACH et al., “Argon Doped Pellets for Fast and Efficient Radiative Power Removal in ASDEX Upgrade,” Nucl. Fusion, 62, 106013 (2022); https://doi.org/10.1088/1741-4326/ac888a.
  • P. T. LANG et al., “A Flexible Pellet Injection System for the Tokamak JT-60SA: The Final Conceptual Design,” Fusion Sci. Technol., 75, 178 (2019); https://doi.org/10.1080/15361055.2018.1471960.
  • B. PLOECKL et al., “Comparison of Different Pellet Injection Systems for ELM Pacing,” Fusion Eng. Des., 86, 1022 (2011); https://doi.org/10.1016/j.fusengdes.2011.02.007.