82
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Thermohydraulic Design Analysis of the Target Assembly in the Material Plasma Exposure eXperiment Facility

ORCID Icon, ORCID Icon, &
Pages 1149-1177 | Received 17 Aug 2022, Accepted 14 Mar 2023, Published online: 19 May 2023

References

  • J. RAPP et al., “Latest Results from Proto-MPEX and the Future Plans for MPEX,” Fusion Sci. Technol., 75, 7, 654 (2019); https://doi.org/10.1080/15361055.2019.1610315.
  • L. M. GARRISON et al., “PHENIX U.S.-Japan Collaboration Investigation of Thermal and Mechanical Properties of Thermal Neutron-Shielded Irradiated Tungsten,” Fusion Sci. Technol., 75, 6, 499 (2019); https://doi.org/10.1080/15361055.2019.1602390.
  • T. LOEWENHOFF et al., “Tungsten and CFC Degradation Under Combined High Cycle Transient and Steady State Heat Loads,” Fusion Eng. Des., 87, 7–8, 1201 (2012); https://doi.org/10.1016/j.fusengdes.2012.02.106.
  • A. S. SABAU et al., “Thermo-Mechanical Distortion of Tungsten-Coated Steel During High Heat Flux Testing Using Plasma Arc Lamps,” Fusion Sci. Technol., 78, 4, 291 (2022); https://doi.org/10.1080/15361055.2021.1994325.
  • A. LUMSDAINE et al., “High-Heat-Flux Target Design for the Material Plasma Exposure eXperiment,” Fusion Sci. Technol., 75, 7, 674 (2019); https://doi.org/10.1080/15361055.2019.1637239.
  • A. S. SABAU et al., “High-Heat-Flux Testing of Irradiated Tungsten-Based Materials for Fusion Applications Using Infrared Plasma Arc Lamps,” Fusion Sci. Technol., 66, 3, 394 (2014); https://doi.org/10.13182/FST14-809.
  • A. S. SABAU et al., “A 6 MW/m2 High Heat Flux Testing Facility of Irradiated Materials Using Infrared Plasma-Arc Lamps,” Fusion Sci. Technol., 75, 690 (2019); https://doi.org/10.1080/15361055.2019.1623571.
  • K. IBANO et al., “Surface Morphology of Tungsten-F82H After High-Heat Flux Testing Using Plasma-Arc Lamps,” Nucl. Mater. Energy, 16, 128 (2018); https://doi.org/10.1016/j.nme.2018.06.015.
  • N. GAO and D. EWING, “Investigation of the Effect of Confinement on the Heat Transfer to Round Impinging Jets Exiting a Long Pipe,” Int. J. Heat Fluid Flow, 27, 1, 33 (2006); https://doi.org/10.1016/j.ijheatfluidflow.2005.06.002.
  • P. DADRAS, J. M. TING, and M. L. LAKE, “Brazing Residual Stresses in Glidcop-Al12Si-Be,” J. Nucl. Mater., 230, 2, 164 (1996); https://doi.org/10.1016/0022-3115(96)00021-9.
  • K. JAMBUNATHAN et al., “A Review of Heat Transfer Data for Single Circular Jet Impingement,” Int. J. Heat Fluid Flow, 13, 2, 106 (1992); https://doi.org/10.1016/0142-727X(92)90017-4.
  • N. KAYANSAYAN and S. KÜÇÜKA, “Impingement Cooling of a Semi-Cylindrical Concave Channel by Confined Slot-Air-Jet,” Exp. Therm. Fluid Sci., 25, 6, 383 (2001); https://doi.org/10.1016/S0894-1777(01)00094-2.
  • Neograf I. TDS 435, Neograf Inc. (2020).
  • “ANSYS CFX-Solver Theory Guide,” ANSYS C. Version 17.0, ANSYS. Inc. (2016).
  • F. R. MENTER, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA J., 32, 8, 1598 (1994); https://doi.org/10.2514/3.12149.
  • W. VIESER and F. R. MENTER, “Heat Transfer Predictions Using Advanced Two-Equation Turbulence Models. CFX Technical Memorandum,” No. CFX-VAL10/0602, ANSYS (2002).
  • S. ALIMOHAMMADI, D. B. MURRAY, and T. PERSOONS, “Experimental Validation of a Computational Fluid Dynamics Methodology for Transitional Flow Heat Transfer Characteristics of a Steady Impinging Jet,” J. Heat Transfer, 136, 9, 091703 (2014); https://doi.org/10.1115/1.4027840.
  • S. K. CHIMAKURTHI et al., “ANSYS Workbench System Coupling: A State-of-the-Art Computational Framework for Analyzing Multiphysics Problems,” Eng. Comput., 34, 2, 385 (2018); https://doi.org/10.1007/s00366-017-0548-4.
  • T. MATSUMOTO, A. CEZAIRLIYAN, and D. BASAK, “Hemispherical Total Emissivity of Niobium, Molybdenum, and Tungsten at High Temperatures Using a Combined Transient and Brief Steady-State Technique,” Int. J. Thermophys., 20, 3, 943 (1999); https://doi.org/10.1023/A:1022699622719.
  • M. SANO et al., “Quantitative Estimation of Thermal Contact Conductance of a Real Front-End Component at SPring-8 Front-Ends,” J. Synchrotron. Radiat., 15, 1, 1 (2008); https://doi.org/10.1107/S0909049507048492.
  • G. E. TOTTEN, ASM Handbook, Vol. 18, Friction, Lubrication, and Wear Technology, ASM International (2017).
  • R. E. SCHMUNK and G. E. KORTH, “Tensile and Low-Cycle Fatigue Measurements on Cross-Rolled Tungsten,” J. Nucl. Mater., 104, 943 (1981); https://doi.org/10.1016/0022-3115(82)90721-8.
  • J. W. DAVIS et al., “Assessment of Tungsten for Use in the ITER Plasma Facing Components,” J. Nucl. Mater., 258–263, 308 (1998); https://doi.org/10.1016/S0022-3115(98)00285-2.
  • T. J. MILLER, S. J. ZINKLE, and B. A. CHIN, “Strength and Fatigue of Dispersion-Strengthened Copper,” J. Nucl. Mater., 179–181, 263 (1991); https://doi.org/10.1016/0022-3115(91)90076-J.
  • “GRAFOIL® Flexible Graphite, Engineering Design Manual,” M. POLLOCK, Ed., Graftech (2002).
  • E. SOLFITI and F. BERTO, “A Review on Thermophysical Properties of Flexible Graphite,” Procedia Struct. Integrity, 26, 187 (2020); https://doi.org/10.1016/j.prostr.2020.06.022.
  • N. B. VARGAFTIK, Thermophysical Properties of Substances, Gosénergoizdat, Moscow-Leningrad (1956).
  • J. JIN, W. XIAO, and H. CHEN, “Thermal Fatigue Life of Glidcop Al‐15 High‐Heat‐Load Components,” AIP Conf. Proc., 1233, 982 (2010).
  • A. S. SABAU, “Review of Thermal Contact Resistance of Flexible Graphite Materials for Thermal Interfaces in High Heat Flux Applications,” ORNL/TM-2022/2564, Oak Ridge National Laboratory (2022).
  • I. SAVIJA, J. CULHAM, and M. YOVANOVICH, “Effective Thermophysical Properties of Thermal Interface Materials: Part II—Experiments and Data,” ASME (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.