622
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In Situ Tritium Decontamination of the KATRIN Rear Wall Using an Ultraviolet/Ozone Treatment

ORCID Icon, , , , , , , & show all
Pages 303-310 | Received 23 Feb 2023, Accepted 11 May 2023, Published online: 12 Jul 2023

References

  • M. AKER et al., “KATRIN: Status and Prospects for the Neutrino Mass and Beyond,” J. Phys. G: Nucl. Part. Phys., 49, 10, 100501 (2022); https://doi.org/10.1088/1361-6471/ac834e.
  • M. BABUTZKA et al., “Monitoring of the Operating Parameters of the KATRIN Windowless Gaseous Tritium Source,” New J. Phys., 14, 10, 103046 (2012); https://doi.org/10.1088/1367-2630/14/10/103046.
  • R. WAGNER et al., “Improvement and Characterization of Small Cross-Piece Ionization Chambers at the Tritium Laboratory Karlsruhe,” Fusion Sci. Technol., 60, 3, 968 (2011); https://doi.org/10.13182/FST11-A12577.
  • M. NISHIKAWA et al., “Ionization Chamber System to Eliminate the Memory Effect of Tritium,” Nucl. Instrum. Methods Phys. Res., Sect. A, 278, 2, 525 (1989); https://doi.org/10.1016/0168-9002(89)90875-9.
  • G. K. LARSEN, K. NGUYEN, and S. E. H. MURPH, “Preventing Tritium Memory Effects in Ion Chambers Using Ultraviolet LEDs,” IEEE Trans. Nucl. Sci., 69, 5, 1092 (2022); https://doi.org/10.1109/TNS.2022.3163630.
  • M. RÖLLIG et al., “Activity Monitoring of a Gaseous Tritium Source by Beta Induced X-Ray Spectrometry,” Fusion Eng. Des., 88, 6, 1263 (2013); https://doi.org/10.1016/j.fusengdes.2012.11.001. Proc. 27th Symp. Fusion Technology (SOFT-27), Liège, Belgium, September 24–28, 2012; https://www.sciencedirect.com/science/article/pii/S0920379612004632.
  • M. AKER et al., “The Design, Construction, and Commissioning of the KATRIN Experiment,” J. Instrum., 16, 8, T08015 (2021); https://doi.org/10.1088/1748-0221/16/08/T08015.
  • M. STURM et al., “Kilogram Scale Throughput Performance of the KATRIN Tritium Handling System,” Fusion Eng. Des., 170, 112507 (2021); https://doi.org/10.1016/j.fusengdes.2021.112507.
  • J. AMSBAUGH et al., “Focal-Plane Detector System for the KATRIN Experiment,” Nucl. Instrum. Methods Phys. Res., Sect. A, 778, 40 (2015); https://doi.org/10.1016/j.nima.2014.12.116.
  • M. AKER et al., “Analysis Methods for the First KATRIN Neutrino-Mass Measurement,” Phys. Rev. D, 104, 1, 012005 (2021); https://doi.org/10.1103/PhysRevD.104.012005.
  • L. STOBIŃSKI and R. DUŚ, “Model of Atomic Hydrogen Adsorption on Thin Gold Film Surface,” Vacuum, 45, 2–3, 299 (1994); https://doi.org/10.1016/0042-207X(94)90194-5.
  • L. STOBIŃSKI, L. ZOMMER, and R. DUŚ, “Molecular Hydrogen Interactions with Discontinuous and Continuous Thin Gold Films,” Appl. Surf. Sci., 141, 3–4, 319 (1999); https://doi.org/10.1016/S0169-4332(98)00517-0.
  • M. NISHIKAWA, T. TAKEISHI, and K. KATAYAMA, “Tritium Decontamination from Various Materials (Experiment with Used Tritium Gas Cylinder),” Materials for Advanced Energy Systems and Fission & Fusion Engineering, pp. 111–120, World Scientific.
  • Y. OYA et al., “Tritium Contamination and Decontamination Study on Materials for ITER Remote Handling Equipment,” Fusion Eng. Des., 55, 4, 449 (2001); https://doi.org/10.1016/S0920-3796(01)00217-4.
  • M. SHARPE, “On the Interaction of Tritium with the Surfaces of Aluminum, Copper, Stainless Steel (Type 316), and Gold,” PhD Thesis, University of Rochester (2016).
  • T. J. VENHAUS et al., “The Effect of UV Light Irradiation on the Removal of Tritium from the Codeposited Carbon–Tritium Layer in Fusion Reactors,” J. Nucl. Mater., 302, 2–3, 224 (2002); https://doi.org/10.1016/S0022-3115(02)00808-5.
  • W. M. SHU et al., “Tritium Decontamination of TFTR Carbon Tiles Employing Ultra Violet Light,” J. Nucl. Mater., 290, 482 (2001); https://doi.org/10.1016/S0022-3115(00)00441-4.
  • Y. OYA et al., “A Study of Tritium Decontamination of Deposits by UV Irradiation,” J. Nucl. Mater., 290, 469 (2001); https://doi.org/10.1016/S0022-3115(00)00440-2.
  • Y. S. CHENG et al., “Characterization of Carbon Tritide Particles in a Tokamak Fusion Reactor,” Fusion Sci. Technol., 41, 3P2, 867 (2002); https://doi.org/10.13182/FST02-A22708.
  • W. DING et al., “Mechanics of Hydrogenated Amorphous Carbon Deposits from Electron-Beam-Induced Deposition of a Paraffin Precursor,” J. Appl. Phys., 98, 1, 014905 (2005); https://doi.org/10.1063/1.1940138.
  • M. T. POSTEK, A. E. VLADÁR, and K. P. PURUSHOTHAM, “Does Your SEM Really Tell the Truth? How Would You Know? Part 2,” Scanning: J. Scanning Microsc., 36, 3, 347 (2014); https://doi.org/10.1002/sca.21124.
  • L. BODINE, D. PARNO, and R. ROBERTSON, “Assessment of Molecular Effects on Neutrino Mass Measurements from Tritium β Decay,” Phys. Rev. C, 91, 3, 035505 (2015); https://doi.org/10.1103/PhysRevC.91.035505.
  • A. SAENZ, S. JONSELL, and P. FROELICH, “Improved Molecular Final-State Distribution of HeT+ for the β-Decay Process of T2,” Phys. Rev. Lett., 84, 2, 242 (2000); https://doi.org/10.1103/PhysRevLett.84.242.
  • N. P. KHERANI and W. T. SHMAYDA, “In-Line Process Tritium Monitors,” Fusion Technol., 21, 2P2, 340 (1992); https://doi.org/10.13182/FST21-2P2-340.
  • M. MATSUYAMA et al., “Contamination of Ionization Chamber Due to Tritium Exposure,” Fusion Technol., 8, 2P2, 2461 (1985); https://doi.org/10.13182/FST85-A24648.
  • W. M. SHU et al., “Characteristics of a Promising Tritium Process Monitor Detecting Bremsstrahlung X-Rays,” Nucl. Instrum. Methods Phys. Res., Sect. A, 521, 2–3, 423 (2004); https://doi.org/10.1016/j.nima.2003.10.110.
  • J. R. VIG, “UV/Ozone Cleaning of Surfaces,” J. Vac. Sci. Technol. A Vac. Surf. Films, 3, 3, 1027 (1985); https://doi.org/10.1116/1.573115.
  • J. P. KRASZNAI and R. MOWAT, “UV/Ozone Treatment to Decontaminate Tritium Contaminated Surfaces,” Fusion Technol., 28, 3P2, 1336 (1995); https://doi.org/10.13182/FST95-A30597.
  • B. V. IVANOV et al., “Detritiation of the Electrostatic Spectrometer of Troitsk Nu-Mass Experiment,” Fusion Sci. Technol., 78, 1, 44 (2022); https://doi.org/10.1080/15361055.2021.1951533.
  • Y. TORIKAI et al., “Effect of Water Vapor on Tritium Decontamination of Stainless Steel 316,” Fusion Sci. Technol., 41, 3P2, 736 (2002); https://doi.org/10.13182/FST02-2.
  • K. Y. WONG et al., “Tritium Decontamination of Machine Components and Walls,” Fusion Eng. Des., 16, 159 (1991); https://doi.org/10.1016/0920-3796(91)90190-2.
  • Y. ISHIKAWA and H. Y. HIROSE, “Etching of Nondiamond Carbon in Diamond Thin Films Synthesized by Hot-Filament Chemical Vapor Deposition with Ultraviolet Irradiation,” Japanese J. Appl. Phys., 36, 3R, 1233 (1997); https://doi.org/10.1143/JJAP.36.1233.