67
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Radiological Impact Assessment of Acute Tritium Releases in Environment—A Soil Dynamic Model

ORCID Icon
Pages 266-275 | Received 04 Feb 2023, Accepted 26 May 2023, Published online: 18 Jul 2023

References

  • Transfer of Tritium in the Environment After Accidental Releases from Nuclear Facilities,” IAEA-TECDOC-1738, International Atomic Energy Agency (2014).
  • A. MELINTESCU and D. GALERIU, “Uncertainty of Current Understanding Regarding OBT Formation in Plants,” J. Environ. Radioact, 167, 134 (2017); https://doi.org/10.1016/j.jenvrad.2016.11.026.
  • D. GALERIU and A. MELINTESCU, “Relevance of Night Production of OBT in Crops,” Fusion Sci. Technol., 71, 4, 595 (2017); https://doi.org/10.1080/15361055.2016.1273705.
  • A. MELINTESCU, “OBT Production in Crops at Night Including Leaf Protein Turnover,” presented at the 5th Int. Conf. on Radioecology and Environmental Radioactivity, Oslo, Norway, September 4–9, 2022.
  • A. MELINTESCU et al., “Preparatory Steps for a Robust Dynamic Model for Organically Bound Tritium Dynamics in Agricultural Crops,” Fusion Sci. Technol., 67, 3, 479 (2015); https://doi.org/10.13182/FST14-T59.
  • A. MELINTESCU, D. GALERIU, and C. LAZAR, “Upgrades of CROPTRIT Model Including Day and Night Dynamics of Tritium in Crops,” presented at the 4th Int. Conf. on Radioecology and Environmental Radioactivity, Berlin, Germany, September 3–8, 2017.
  • D. GALERIU et al., “Development of CROPTRIT Model: The Dynamics of Tritium in Agricultural Crops,” presented at the 3rd Int. Conf. on Radioecology and Environmental Radioactivity, Barcelona, Spain, September 7–12, 2014; https://intranet.pacifico-meetings.com/amsysweb/faces/publicacionOnline.xhtml?id=146.
  • H. L. BOOGAARD et al., “User’s Guide for the WOFOST 7.1 Crop Growth Simulation Model and WOFOST Control Center 1.5,” Technical Document 52, DLO Winand Staring Centre (1998).
  • A. MELINTESCU and D. GALERIU, “A Versatile Model for Tritium Transfer from Atmosphere to Plant and Soil,” Radioprotection, 40, 1, S437 (2005); https://doi.org/10.1051/radiopro:2005s1-064.
  • A. MELINTESCU and D. GALERIU, “Exchange Velocity Approach and the Role of Photosynthesis for Tritium Transfer from Atmosphere to Plants,” Fusion Sci. Technol., 60, 3, 1179 (2011); https://doi.org/10.13182/FST11-A12625.
  • J. L. MONTEITH, “Evapotranspiration and Environment,” Proc. Symp. of the Society for 393 Experimental Biology, the State and Movement of Water in Living Organisms, 19, 205, Academic Press, New York (1965).
  • W. J. SHUTTLEWORT and J. S. WALLACE, “Evaporation from Sparse Crops—An Energy Combination Theory,” Quart. I. R. Met. Soc., 111, 839 (1985); https://doi.org/10.1002/qj.49711146910.
  • D. GALERIU et al., “An Overview of Organically Bound Tritium Experiments in Plants Following a Short Atmospheric HTO Exposure,” J. Environ. Radioactiv, 118, 40 (2013); https://doi.org/10.1016/j.jenvrad.2012.11.005.
  • J. KONDO, N. SAIGUSA, and T. SATO, “A Parameterization of Evaporation from Bare Soil Surfaces,” J. Appl. Meteorol, 29, 5, 385 (1990); https://doi.org/10.1175/1520-0450(1990)029<0385:APOEFB>2.0.CO;2.
  • R. HAVERKAMP et al., “A Comparison of Numerical Simulation Models for One-Dimensional Infiltration,” Soil Sci. Soc. Am. J, 41, 2, 285 (1977); https://doi.org/10.2136/sssaj1977.03615995004100020024x.
  • M. A. CELIA et al., “A General Mass-Conservative Numerical Solution for the Unsaturated Flow Equation,” Water Resour. Res, 26, 7, 1483 (1990); https://doi.org/10.1029/WR026i007p01483.
  • R. H. BROOKS and A. T. COREY, “Hydraulic Properties of Porous Media,” Hydrology Paper 3, Colorado State University (1964).
  • G. S. CAMPBELL and W. G. GLENDON, “Chap. 25—Water Potential: Miscellaneous Methods,” in Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, p. 619, SSSA Book Series (1986); https://doi.org/10.2136/sssabookser5.1.2ed.c25.
  • M. T. van GENUCHTEN, “A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils,” Soil Sci. Soc. Am. J, 44, 5, 892 (1980); https://doi.org/10.2136/sssaj1980.03615995004400050002x.
  • I. BRAUD et al., “SiSPAT-Isotope, a Coupled Heat, Water and Stable Isotope (HDO and H2 18O) Transport Model for Bare Soil. Part I. Model Description and First Verifications,” J. Hydrol, 309, 1–4, 277 (2005); https://doi.org/10.1016/j.jhydrol.2004.12.013.
  • M. BITTELLI et al., “Correction of TDR-Based Soil Water Content Measurements in Conductive Soils,” Geoderma, 143, 1–2, 133 (2008); https://doi.org/10.1016/j.geoderma.2007.10.022.
  • D. GALERIU et al., “Model Description of the Tritium Food Chain and Dose Module FDMH in RODOS PV 4,” RODOS (WG3)-TN(99)-54, European Commission (2000).
  • D. GALERIU et al., “Documentation of Tritium Food Chain and Dose Module FDMH in RODOS PV4,” RODOS(WG3)-TN(99)-56, European Commission (2000).
  • A. MELINTESCU, D. GALERIU, and E. MARICA, “Using WOFOST Crop Model for Data Base Derivation of Tritium and Terrestrial Food Chain Modules in RODOS,” Radioprotection, 37, C1, 1242 (2002); https://doi.org/10.1051/radiopro/2002154.
  • A. BUSUIOC et al., “Scenarii de Schimbare a Regimului Climatic in Romania Pe Perioada 2001-2030,” Administratia Nationala de Meteorologie (2003) (in Romanian); http://mmediu.ro/new/wp-content/uploads/2014/02/2012-04-23_schimbari_climatice_schimbareregimclimatic2001_2030.pdf.
  • P. J. ROSS, “Modelling Soil Water and Solute Transport—Fast, Simplified Numerical Solutions,” Agron. J, 95, 1352 (2003); https://doi.org/10.2134/agronj2003.1352.
  • V. HAVERD and M. CUNTZ, “Soil-Litter-Iso: A One-Dimensional Model for Coupled Transport of Heat, Water and Stable Isotopes in Soil with a Litter Layer and Root Extraction,” J. Hydrol, 388, 438 (2010); https://doi.org/10.1016/j.jhydrol.2010.05.029.
  • K. Y. LI, R. D. E. JONG, and J. B. BOISVERT, “An Exponential Root-Water-Uptake Model with Water Stress Compensation,” J. Hydrol, 252, 1–4, 189 (2001); https://doi.org/10.1016/S0022-1694(01)00456-5.
  • H. YAMAZAWA, “A One-Dimensional Dynamical Soil-Atmosphere Tritiated Water Transport Model,” Environ. Model Softw, 16, 739 (2001); https://doi.org/10.1016/S1364-8152(01)00039-1.
  • M. OTA and H. NAGAI, “Development and Validation of a Dynamical Atmosphere-Vegetation-Soil HTO Transport and OBT Formation Model,” J. Environ. Radioact, 102, 813 (2011); https://doi.org/10.1016/j.jenvrad.2011.05.007.
  • M. OTA, H. NAGAI, and J. KOARASHI, “Importance of Root HTO Uptake in Controlling Land-Surface Tritium Dynamics After an Acute HT Deposition: A Numerical Experiment,” J. Environ. Radioact, 109, 94 (2012); https://doi.org/10.1016/j.jenvrad.2012.02.004.
  • Q. DE JONG VAN LIER et al., “Modeling Water Potentials and Flows in the Soil-Plant System Comparing Hydraulic Resistances and Transpiration Reduction Functions,” Vadoze Zone J, 12, 3, 1 (2013); https://doi.org/10.2136/vzj2013.02.0039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.