129
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Organic Vacuum Pump Fluids for the Vacuum Pumping of Fusion Power Plants

ORCID Icon, , , , , , & show all
Pages 781-791 | Received 08 Mar 2023, Accepted 30 Jun 2023, Published online: 29 Aug 2023

References

  • V. HAUER et al., “Design of the ITER Torus Prototype Cryopump,” Fusion Eng. Des., 82, 2113 (2007); http://dx.doi.org/10.1016/j.fusengdes.2007.07.039.
  • C. DAY and D. MURDOCH, “The ITER Vacuum Systems,” J. Phys. Conf. Ser., 114, 1, 012013 (2008).
  • C. DAY and T. GIEGERICH, “Development of Advanced Exhaust Pumping Technology for a DT Fusion Power Plant,” IEEE Trans. Plasma Sci., 42, 1058 (2014); http://dx.doi.org/10.1109/TPS.2014.2307435.
  • B. PETERS et al., “Metal Foil Pump Performance Aspects in View of the Implementation of Direct Internal Recycling for Future Fusion Fuel Cycles,” Fusion Eng. Des., 136B, 1467 (2018); http://dx.doi.org/10.1016/j.fusengdes.2018.05.036.
  • C. A. FOSTER et al., “A Continuous Cryogenic Diffusion Pump for Fusion Reactors,” Proc. 21st IEEE/NPS Symp. Fusion Engineering (SOFE 05), Knoxville, Tennessee, September 26–29, 2005, Institute of Electrical and Electronics Engineers (2005).
  • C. LI et al., “Low Temperature Hydrogen Plasma Permeation in Palladium and Its Alloys for Fuel Recycling in Fusion Systems,” J. Nucl. Mater., 582, 154484 (2023); http://dx.doi.org/10.1016/j.jnucmat.2023.154484.
  • N. NICHOLAS and B. SHAFFER, “All-Metal Scroll Vacuum Pumps for Tritium Processing Systems,” Fusion Sci. Technol., 76, 366 (2020); http://dx.doi.org/10.1080/15361055.2020.1712988.
  • T. GIEGERICH and C. DAY, “The KALPUREX-Process—A New Vacuum Pumping Process for Exhaust Gases in Fusion Power Plants,” Fusion Eng. Des., 89, 1476 (2014); http://dx.doi.org/10.1016/j.fusengdes.2014.03.082.
  • T. GIEGERICH et al., “Mercury Ring Pump Proof-of-Principle Testing in the THESEUS Facility,” Fusion Eng. Des., 124, 809 (2017); http://dx.doi.org/10.1016/j.fusengdes.2017.03.119.
  • K. DIELS and R. JAECKEL, Leybold Vacuum Handbook, Vol. 1, Pergamon Press (1966).
  • E. A. CLARK and K. L. SHANAHAN, “Effects of Tritium on UHMW-PE, PTFE, and Vespel[Registered Trademark] Polyimide,” Fusion Sci. Technol., 52, 4, 1007 (2007); http://dx.doi.org/10.13182/FST07-A1626.
  • P. CHASTAGNER, “Selection of Fluids for Tritium Pumping Systems,” presented at the 13th Annual Symp. on Applied Vacuum Science & Technology, Clearwater Beach, Florida, February 1–5, 1984 (1984); https://www.osti.gov/servlets/purl/5217922.
  • D. HITCHCOCK et al., “Tritium Effects on Aromatic Carbon–Loaded Polymers,” Fusion Sci. Technol., 76, 7, 861 (2020); http://dx.doi.org/10.1080/15361055.2020.1817704.
  • C. N. FILER, “Synthesis and Characterization of Tritium-Labelled Substances,” Appl. Radiat. Isot., 137, 261 (2018); http://dx.doi.org/10.1016/j.apradiso.2018.02.029.
  • A. SAZONOV et al., “Interaction of Tritium with Oils and Tritiated Waste Oil Decontamination,” Fusion Sci. Technol., 54, 2, 584 (2008); http://dx.doi.org/10.13182/FST08-A1883.
  • K. ARAKAWA et al., “Data on Radiation Resistance of Lubricating Oil,” JAERI-M-87-141, Japan Atomic Energy Research Institute (1987).
  • L. DONG et al., “Theoretical Investigation of Isotope Exchange Reaction in Tritium-Contaminated Mineral Oil in Vacuum Pump,” J. Hazard. Mater., 287, 42 (2015); http://dx.doi.org/10.1016/j.jhazmat.2015.01.030.
  • S. OKADA and N. MOMOSHIMA, “Overview of Tritium: Characteristics, Sources, and Problems,” Health Phys., 65, 6, 595 (1993); http://dx.doi.org/10.1097/00004032-199312000-00001.
  • S. D’HONDT et al., “A Quantitative Model of Water Radiolysis and Chemical Production Rates Near Radionuclide-Containing Solids,” Radiat. Phys., 115, 127 (2015); http://dx.doi.org/10.1016/j.radphyschem.2015.06.011.
  • J. DOWLING-MEDLEY and J. A. LAVERNE, “Combinations of Aromatic and Aliphatic Radiolysis,” J. Phys. Chem. A., 119, 10125 (2015); http://dx.doi.org/10.1021/acs.jpca.5b07414.
  • E. BÄCKSTRÖM et al., “Trash to Treasure: Microwave-Assisted Conversion of Polyethylene to Functional Chemicals,” Ind. Eng. Chem. Res., 56, 50, 14814 (2017); http://dx.doi.org/10.1021/acs.iecr.7b04091.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.