323
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Parameter Space Constraints for Compact Spherical Tokamak Fusion Reactors

ORCID Icon & ORCID Icon
Pages 741-765 | Received 26 Apr 2023, Accepted 02 Aug 2023, Published online: 09 Oct 2023

References

  • Y. K. PENG and D. STRICKLER, “Features of Spherical Torus Plasmas,” Nucl. Fusion, 26, 769 (1986); http://dx.doi.org/10.1088/0029-5515/26/6/005.
  • J. MENARD et al., “Ideal MHD Stability Limits of Low Aspect Ratio Tokamak Plasmas,” Nucl. Fusion, 37, 595 (1997); http://dx.doi.org/10.1088/0029-5515/37/5/i03.
  • A. SYKES et al., “High-Performance of the START Spherical Tokamak,” Plasma Phys. Controlled Fusion, 39, B247 (1997); http://dx.doi.org/10.1088/0741-3335/39/12b/019.
  • A. SYKES, “Overview of Recent Spherical Tokamak Results,” Plasma Phys. Controlled Fusion, 43, A127 (2001); http://dx.doi.org/10.1088/0741-3335/43/12a/309.
  • A. COSTLEY, J. HUGILL, and P. BUXTON, “On the Power and Size of Tokamak Fusion Pilot Plants and Reactors,” Nucl. Fusion, 55, 033001 (2015); http://dx.doi.org/10.1088/0029-5515/55/3/033001.
  • T. BROWN et al., “PPPL ST-FNSF Engineering Design Details,” Fusion Sci. Technol., 68, 277 (2015); http://dx.doi.org/10.13182/FST14-911.
  • D. WARD and R. KEMP, “The Resilience of an Operating Point for a Fusion Power Plant,” Fusion Eng. Des., 98–99, 2223 (2015); http://dx.doi.org/10.1016/j.fusengdes.2014.11.021.
  • N. J. L. CARDOZO, “Economic Aspects of the Deployment of Fusion Energy: The Valley of Death and the Innovation Cycle,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 377, 20170444 (2019); https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2017.0444.
  • A. E. COSTLEY, “Towards a Compact Spherical Tokamak Fusion Pilot Plant,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 377, 20170439 (2019); https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2017.0439.
  • J. MENARD et al., “Fusion Nuclear Science Facilities and Pilot Plants Based on the Spherical Tokamak,” Nucl. Fusion, 56, 106023 (2016); http://dx.doi.org/10.1088/0029-5515/56/10/106023.
  • E. SURREY, “Engineering Challenges for Accelerated Fusion Demonstrators,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 377, 20170442 (2019); https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2017.0442.
  • J. MENARD et al., “Fusion Pilot Plant Performance and the Role of a Sustained High Power Density Tokamak,” Nucl. Fusion, 62, 036026 (2022); http://dx.doi.org/10.1088/1741-4326/ac49aa.
  • L. EL-GUEBALY et al., “TBM/MTM for HTS-FNSF: An Innovative Testing Strategy to Qualify/Validate Fusion Technologies for U.S. DEMO,” Energies, 9, 632 (2016); https://www.mdpi.com/1996-1073/9/8/632.
  • M. S. TILLACK et al., “An Evaluation of Fusion Energy R&D Gaps Using Technology Readiness Levels,” Fusion Sci. Technol., 56, 949 (2009); http://dx.doi.org/10.13182/FST09-A9033.
  • T. HENDER et al., “Spherical Tokamak Power Plant Design Issues,” Fusion Eng. Des., 48, 255 (2000); https://doi.org/10.1016/S0920-3796(00)00169-1.
  • S. ITO and H. HASHIZUME, “Overview of Fundamental Study on Remountable HTS Magnet,” Fusion Eng. Des., 81, 2527 (2006); https://doi.org/10.1016/j.fusengdes.2006.07.005.
  • D. WHYTE, “Small, Modular and Economically Attractive Fusion Enabled by High Temperature Superconductors,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 377, 20180354 (2019); https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2018.0354.
  • A. SYKES et al., “The ST25 Tokamak for Rapid Technological Development,” IEEE 25th Symposium on Fusion Engineering (SOFE), San Francisco, CA, pp. 1–4 (2013); http://dx.doi.org/10.1109/SOFE.2013.6635330.
  • D. D. RYUTOV, “Geometrical Properties of a ‘Snowflake’ Divertor,” Phys. Plasmas, 14, 064502 (2007); http://dx.doi.org/10.1063/1.2738399.
  • D. D. RYUTOV and V. A. SOUKHANOVSKII, “The Snowflake Divertor,” Phys. Plasmas, 22, 110901 (2015); http://dx.doi.org/10.1063/1.4935115.
  • R. GOLDSTON, R. MYERS, and J. SCHWARTZ, “The Lithium Vapor Box Divertor ,” Physica Scripta, 2016, 014017 (2016); https://dx.doi.org/10.1088/0031-8949/T167/1/014017.
  • P. M. VALANJU et al., “Super-X Divertors and High Power Density Fusion Devices,” Phys. Plasmas, 16, 056110 (2009); http://dx.doi.org/10.1063/1.3110984.
  • M. KOTSCHENREUTHER et al., “Magnetic Geometry and Physics of Advanced Divertors: The X-divertor and the Snowflake,” Phys. Plasmas, 20, 102507 (2013); http://dx.doi.org/10.1063/1.4824735.
  • P. PRAJAPATI and S. DESHPANDE, “Power Conversion from Spherical Tokamak Test Reactor with Helium-Cooled and Water-Cooled Blanket,” Fusion Eng. Des., 176, 113024 (2022); https://doi.org/10.1016/j.fusengdes.2022.113024.
  • L. BARUCCA et al., “Status of EU DEMO Heat Transport and Power Conversion Systems,” Fusion Eng. Des., 136, 1557 (2018); http://dx.doi.org/10.1016/j.fusengdes.2018.05.057.
  • E. BUBELIS, W. HERING, and S. PEREZ-MARTIN, “Conceptual Designs of PHTS, ESS and PCS for DEMO BoP with Helium Cooled BB Concept,” Fusion Eng. Des., 136, 367 (2018); https://doi.org/10.1016/j.fusengdes.2018.02.040.
  • K. HANADA et al., “Investigation of Hydrogen Recycling in Long-Duration Discharges and Its Modification with a Hot Wall in the Spherical Tokamak QUEST,” Nucl. Fusion, 57, 126061 (2017); https://dx.doi.org/10.1088/1741-4326/aa8121.
  • Y. ANDREW et al., “H-Mode Power Threshold Studies on MAST,” Plasma, 2, 328 (2019); https://www.mdpi.com/2571-6182/2/3/24.
  • L. HOWLETT et al., “L-H Transition Studies on MAST: Power Threshold and Heat Flux Analysis,” Nucl. Fusion, 63, 052001 (2023); https://dx.doi.org/10.1088/1741-4326/acc2cf.
  • R. MAINGI et al., “H-mode Research in NSTX,” Nucl. Fusion, 43, 969 (2003); https://dx.doi.org/10.1088/0029-5515/43/9/322.
  • C. KESSEL et al., “Overview of the Fusion Nuclear Science Facility, a Credible Break-In Step on the Path to Fusion Energy,” Fusion Eng. Des., 135, 236 (2018); https://doi.org/10.1016/j.fusengdes.2017.05.081.
  • R. D. STAMBAUGH et al., “Fusion Nuclear Science Facility Candidates,” Fusion Sci. Technol., 59, 279 (2011); http://dx.doi.org/10.13182/FST59-279.
  • R. STAMBAUGH, L. LAO, and E. LAZARUS, “Relation of Vertical Stability and Aspect Ratio in Tokamaks,” Nucl. Fusion, 32, 1642 (1992); https://dx.doi.org/10.1088/0029-5515/32/9/I12.
  • Y. LIN-LIU and R. STAMBAUGH, “Optimum Equilibria for High Performance, Steady State Tokamaks,” Nucl. Fusion, 44, 548 (2004); https://dx.doi.org/10.1088/0029-5515/44/4/009.
  • H. S. BOSCH and G. HALE, “Improved Formulas for Fusion Cross-Sections and Thermal Reactivities,” Nucl. Fusion, 32, 611 (1992); http://dx.doi.org/10.1088/0029-5515/32/4/i07.
  • P. F. BUXTON et al., “On the Energy Confinement Time in Spherical Tokamaks: Implications for the Design of Pilot Plants and Fusion Reactors,” Plasma Phys. Controlled Fusion, 61, 035006 (2019); http://dx.doi.org/10.1088/1361-6587/aaf7e5.
  • C. C. PETTY, “Sizing up Plasmas Using Dimensionless Parameters,” Phys. Plasmas, 15, 080501 (2008); http://dx.doi.org/10.1063/1.2961043.
  • J. MENARD, “Compact Steady-State Tokamak Performance Dependence on Magnet and Core Physics Limits,” Philos. Trans. Royal Soc. A: Math., Phys. Eng. Sci., 377, 20170440 (2019).
  • M. SHIMADA et al., “Chapter 1: Overview and Summary,” Nucl. Fusion, 47, S1 (2007); http://dx.doi.org/10.1088/0029-5515/47/6/s01.
  • E. J. DOYLE et al., “Chapter 2: Plasma Confinement and Transport,” Nucl. Fusion, 47, S18 (2007); http://dx.doi.org/10.1088/0029-5515/47/6/s02.
  • ITPA-MODE POWER THRESHOLD DATABASE WORKING GROUP, “Roles of Aspect Ratio, Absolute B and Effective Z of the H-mode Power Threshold in Tokamaks of the ITPA Database,” Plasma Phys. Controlled Fusion, 46, A227 (2004); http://dx.doi.org/10.1088/0741-3335/46/5a/024.
  • S. M. KAYE, J. W. CONNOR, and C. M. ROACH, “Thermal Confinement and Transport in Spherical Tokamaks: A Review,” Plasma Phys. Controlled Fusion, 63, 123001 (2021); http://dx.doi.org/10.1088/1361-6587/ac2b38.
  • H. ZOHM, “On the Minimum Size of DEMO,” Fusion Sci. Technol., 58, 613 (2010); http://dx.doi.org/10.13182/FST10-06.
  • D. E. POST et al., “Steady-State Radiative Cooling Rates for Low-Density, High-Temperature Plasmas,” At. Data Nucl. Data Tables (United States), 20, 5 (1977); https://www.osti.gov/biblio/6840322.
  • J. JORDANOVA et al., “Parametric Neutronic Analysis of HCLL Blanket for DEMO Fusion Reactor Utilizing Vacuum Vessel ITER FDR Design,” Fusion Eng. Des., 81, 2213 (2006); https://doi.org/10.1016/j.fusengdes.2006.02.001.
  • S. A. HUMPHRY-BAKER and G. D. W. SMITH, “Shielding Materials in the Compact Spherical Tokamak,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 377, 20170443 (2019); https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2017.0443.
  • B. HONG et al., “Conceptual Design Study of a Superconducting Spherical Tokamak Reactor with a Self Consistent System Analysis Code,” Nucl. Fusion, 51, 113013 (2011); http://dx.doi.org/10.1088/0029-5515/51/11/113013.
  • L. EL-GUEBALY, “Nuclear Performance Assessment of ARIES-AT,” Fusion Eng. Des., 80, 99 (2006); https://doi.org/10.1016/j.fusengdes.2005.06.355.
  • C. G. WINDSOR et al., “Tungsten Boride Shields in a Spherical Tokamak Fusion Power Plant,” Nucl. Fusion, 61, 086018 (2021); http://dx.doi.org/10.1088/1741-4326/ac09ce.
  • N. J. SIMON, “A Review of Irradiation Effects on Organic-Matrix Insulation,” NISTIR-3999, U.S. Department of Energy (1993); https://www.osti.gov/biblio/761714.
  • R. PROKOPEC et al., “Suitability of Coated Conductors for Fusion Magnets in View of Their Radiation Response,” Supercond. Sci. Technol., 28, 014005 (2014); http://dx.doi.org/10.1088/0953-2048/28/1/014005.
  • M. JIRSA et al., “Effect of Neutron Irradiation on Critical Currents of REBaCuO Superconducting Tapes Considered for Magnets in Fusion Reactors,” IEEE Trans. Appl. Supercond., 28, 1 (2018).
  • B. N. SORBOM et al., “ARC: A Compact, High-Field, Fusion Nuclear Science Facility and Demonstration Power Plant with Demountable Magnets,” Fusion Eng. Des., 100, 378 (2015); http://dx.doi.org/10.1016/j.fusengdes.2015.07.008.
  • H. IIDA et al., ITER Document, IDM G 73, Nuclear Analysis Report, ITER Organization (2004).
  • “Scilab”; www.scilab.org (accessed Dec. 3, 2022).
  • M. GRYAZNEVICH, A. NICOLAI, and P. BUXTON, “Fast Particles in a Steady-State Compact FNS and Compact ST Reactor,” Nucl. Fusion, 54, 104005 (2014); http://dx.doi.org/10.1088/0029-5515/54/10/104005.
  • J. JEAN, “HELIOS: A Zero-Dimensional Tool for Next Step and Reactor Studies,” Fusion Sci. Technol., 59, 308 (2011); http://dx.doi.org/10.13182/FST11-A11650.
  • T. HARTMANN, “Development of a Modular Systems Code to Analyse the Implications of Physics Assumptions on the Design of a Demonstration Fusion Power Plant,” PhD Thesis, Technische Universität München, School of Engineering and Design (2013).
  • M. A. ABDOU et al., “A Helium-Cooled Solid Breeder Concept for the Tritium-Producing Blanket of the International Thermonuclear Experimental Reactor,” Fusion Technol., 15, 166 (1989); http://dx.doi.org/10.13182/FST89-A25354.
  • Y. WATANABE, M. A. ABDOU, and M. Z. YOUSSEF, “Determination of the Required Tritium Breeding Ratio for the Next Fusion Experimental Reactor,” Fusion Technol., 15, 617 (1989); http://dx.doi.org/10.13182/FST89-A39766.
  • P. PRAJAPATI et al., “Design and Comparison Study of Steam Generator Concepts and Power Conversion Cycles for Fusion Reactors,” Fusion Eng. Des., 161, 112069 (2020); https://doi.org/10.1016/j.fusengdes.2020.112069.
  • L. MALINOWSKI, M. LEWANDOWSKA, and F. GIANNETTI, “Analysis of the Secondary Circuit of the DEMO Fusion Power Plant Using GateCycle,” Fusion Eng. Des., 124, 1237 (2017); https://doi.org/10.1016/j.fusengdes.2017.03.026.
  • E. MARTELLI et al., “Study of EU DEMO WCLL Breeding Blanket and Primary Heat Transfer System Integration,” Fusion Eng. Des., 136, 828 (2018); https://doi.org/10.1016/j.fusengdes.2018.04.016.
  • F. WARMER and E. BUBELIS, “First Considerations on the Balance of Plant for a HELIAS Fusion Power Plant,” Fusion Eng. Des., 146, 2259 (2019); https://doi.org/10.1016/j.fusengdes.2019.03.167.
  • M. KOVARI et al., “Converting Energy from Fusion into Useful Forms,” Proc. Inst. Mech. Eng. A J. Power Energy, 228, 234 (2013); https://doi.org/10.1177/0957650913514230.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.