168
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Modeling the Tokamak Exhaust Processing System in a Commercial Simulator for Process Monitoring Purposes

ORCID Icon, , ORCID Icon, &
Pages 374-390 | Received 01 Feb 2023, Accepted 30 Aug 2023, Published online: 24 Oct 2023

References

  • I. R. CRISTESCU et al., “Tritium Inventory Assessment for ITER Using TRIMO,” Fusion Eng. Des., 81, 1–7, 763 (2006); http://dx.doi.org/10.1016/j.fusengdes.2005.06.367.
  • I. CRISTESCU et al., “Review of the TLK Activities Related to Water Detritiation, Isotope Separation Based on Cryogenic Distillation and Development of Barriers Against Permeation,” Fusion Sci. Technol., 71, 3, 225 (2017); http://dx.doi.org/10.1080/15361055.2017.1288057.
  • E. IRAOLA et al., “Dynamic Simulation Tools for Isotopic Separation System Modeling and Design,” Fusion Eng. Des., 169, 112452 (2021); http://dx.doi.org/10.1016/j.fusengdes.2021.112452.
  • “ITER Technical Basis,” ITER EDA Documentation Series No. 24, International Atomic Energy Agency (2002); https://www.iaea.org/publications/6492/iter-technical-basis.
  • M. GLUGLA et al., “Design of a Catalytic Exhaust Clean-Up Unit for ITER,” Fusion Eng. Des., 39–40, 893 (1998); http://dx.doi.org/10.1016/S0920-3796(98)00114-8.
  • R. H. SHERMAN, “Cryogenic Hydrogen Isotope Distillation for the Fusion Fuel Cycle,” Fusion Technol., 8, 2P2, 2175 (1985); https://doi.org/10.13182/FST85-A24605.
  • R. LÄSSER et al., “Hydrogen Isotope Separation in the JET Active Gas Handling System During DTE1,” Proc. 20th Symp. Fusion Technology, Marseille, France, September 7–11, 1998, p. 89 (1998); http://www.euro-fusionscipub.org/wp-content/uploads/2014/11/JETC98048.pdf.
  • T. YAMANISHI et al., “Demonstration of the Integrated Fusion Fuel Loop at the Tritium Process Laboratory of the Japan Atomic Energy Research Institute,” Fusion Technol., 34, 3P2, 536 (1998); https://doi.org/10.13182/FST98-A11963668.
  • I. STEFAN et al., “Computer Based Architecture to Control Water Detritiation Process,” Fusion Eng. Des., 146, 2613 (2019); http://dx.doi.org/10.1016/j.fusengdes.2019.04.055.
  • M. GLUGLA et al., “The ITER Tritium Systems,” Fusion Eng. Des., 82, 472 (2007); http://dx.doi.org/10.1016/j.fusengdes.2007.02.025.
  • J. WILSON et al., “The ITER Tokamak Exhaust Processing System Design and Substantiation,” Fusion Sci. Technol., 75, 8, 794 (2019); http://dx.doi.org/10.1080/15361055.2019.1642089.
  • M. GLUGLA et al., “Recovery of Tritium from Different Sources by the ITER Tokamak Exhaust Processing System,” Fusion Eng. Des., 61–62, 569 (2002); http://dx.doi.org/10.1016/S0920-3796(02)00250-8.
  • I. R. CRISTESCU et al., “Tritium Inventories and Tritium Safety Design Principles for the Fuel Cycle of ITER,” Nucl. Fusion, 47, 7, S458 (2007); http://dx.doi.org/10.1088/0029-5515/47/7/s08.
  • H. YOSHIDA et al., “Design of the ITER Tritium Plant, Confinement and Detritiation Facilities,” Fusion Eng. Des., 61–62, 513 (2002); http://dx.doi.org/10.1016/S0920-3796(02)00105-9.
  • M. GLUGLA et al., “Permcat Reactor for Impurity Processing in the JET Active Gas Handling System,” Fusion Eng. Des., 49–50, 817 (2000); http://dx.doi.org/10.1016/S0920-3796(00)00209–X.
  • G. J. M. HAGELAAR et al., “Modelling of Tokamak Glow Discharge Cleaning I: Physical Principles,” Plasma Phys. Controlled Fusion, 57, 2, 25008 (2015); http://dx.doi.org/10.1088/0741-3335/57/2/025008.
  • A. POORE and B. ROGERS, “Status of the ITER Tokamak Exhaust Process System,” Savannah River National Laboratory (2014); https://www.energy.gov/sites/prod/files/2015/09/f26/40-AnitaPoore-SRNL-STI-2014-00175StatusoftheITERTokamakExhaustProcessSystem.pdf.
  • P. C. SOUERS, Hydrogen Properties for Fusion Energy, University of California Press, Berkeley, California (1986); http://dx.doi.org/10.1525/9780520338401.
  • D. R. BURGESS Jr., “Thermochemical Data,” NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P. LINSTROM and W. MALLARD, Eds., National Institute of Standards and Technology, Gaithersburg, Maryland; http://dx.doi.org/10.18434/T4D303.
  • E. W. LEMMON, M. O. MCLINDEN, and D. G. FRIEND, “Thermophysical Properties of Fluid Systems,” NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P. LINSTROM and W. MALLARD, Eds., National Institute of Standards and Technology, Gaithersburg, Maryland; http://dx.doi.org/10.18434/T4D303.
  • P. C. SOUERS, Cryogenic Hydrogen Data Pertinent to Magnetic Fusion Energy, Lawrence Livermore National Laboratory (1979); http://inis.iaea.org/search/search.aspx?orig{_}q=RN:10490410.
  • H. J. HOGE and R. D. ARNOLD, “Vapor Pressures of Hydrogen, Deuterium, and Hydrogen Deuteride and Dew-Point Pressures of Their Mixtures,” J. Res. Natl. Bur. Stand, 47, 2 (1951).
  • H. HOGE and J. LASSITER, “Critical Temperatures, Pressures, and Volumes of Hydrogen, Deuterium, and Hydrogen Deuteride,” J. Res. Nat. Bur. Stand., 47, 2, 75 (1951); http://dx.doi.org/10.6028/jres.047.010.
  • F. G. BRICKWEDDE, R. B. SCOTT, and H. S. TAYLOR, “The Difference in Vapor Pressures of Ortho and Para Deuterium,” J. Chem. Phys., 3, 11, 653 (1935); http://dx.doi.org/10.1063/1.1749571.
  • H. C. UREY, “Some Thermodynamic Properties of Hydrogen and Deuterium,” Nobel Lecture (1935); https://www.nobelprize.org/prizes/chemistry/1934/urey/lecture/.
  • A. S. FRIEDMAN, D. WHITE, and H. L. JOHNSTON, “The Direct Determination of the Critical Temperature and Critical Pressure of Normal Deuterium. Vapor Pressures Between the Boiling and Critical Points,” J. Am. Chem. Soc., 73, 3, 1310 (1951); http://dx.doi.org/10.1021/ja01147a133.
  • E. R. GRILLY, “The Vapor Pressures of Hydrogen, Deuterium and Tritium up to Three Atmospheres,” J. Am. Chem. Soc., 73, 2, 843 (1951); http://dx.doi.org/10.1021/ja01146a103.
  • A. VAN ITTERBEEK et al., “The Difference in Vapour Pressure Between Normal and Equilibrium Hydrogen. Vapour Pressure of Normal Hydrogen Between 20°K and 32°K,” Physica, 30, 6, 1238 (1964); http://dx.doi.org/10.1016/0031-8914(64)90114-4.
  • H. TER HARMSEL, H. VAN DIJK, and M. DURIEUX, “The Heat of Vaporization of Equilibrium Hydrogen,” Physica, 33, 2, 503 (1967); http://dx.doi.org/10.1016/0031-8914(67)90181-4.
  • H. W. WOOLLEY, R. B. SCOTT, and F. G. BRICKWEDDE, “Compilation of Thermal Properties of Hydrogen in Its Various Isotopic and Ortho-Para Modifications,” J. Res. Nat. Bur. Stand., 41, 5, 379 (1948); http://dx.doi.org/10.6028/jres.041.037.
  • F. GALLUCCI et al., “The Effect of the Hydrogen Flux Pressure and Temperature Dependence Factors on the Membrane Reactor Performances,” Int. J. Hydrogen Energy, 32, 16, 4052 (2007); http://dx.doi.org/10.1016/j.ijhydene.2007.03.039.
  • S. KONISHI, H. YOSHIDA, and Y. NARUSE, “A Design Study of a Palladium Diffuser for a D-T Fusion Reactor Fuel Clean-Up System,” J. Less Common Met., 89, 2, 457 (1983); http://dx.doi.org/10.1016/0022-5088(83)90356-9.
  • E. SERRA et al., “Hydrogen and Deuterium in Pd-25 pct Ag Alloy: Permeation, Diffusion, Solubilization, and Surface Reaction,” Metall. Mater. Trans. A, 29, 13, 1023 (1998); http://dx.doi.org/10.1007/s11661-998-1011-3.
  • H. FUJITA et al., “Ratio of Permeabilities of Tritium to Protium Through Palladium-Alloy Membrane,” J. Nucl. Sci. Technol., 17, 6, 436 (1980); http://dx.doi.org/10.1080/18811248.1980.9732607.
  • F. J. ACKERMAN and G. J. KOSKINAS, “A Model for Predicting the Permeation of Hydrogen-Deuterium-Inert Gas Mixtures Through Palladium Tubes,” Ind. Eng. Chem. Fundam., 11, 3, 332 (1972); http://dx.doi.org/10.1021/i160043a008.
  • R. YAMADA, “Chemical Sputtering Yields of Graphite,” J. Nucl. Mater., 145–147, 359 (1987); http://dx.doi.org/10.1016/0022-3115(87)90360-6.
  • M. GLUGLA and R.-D. PENZHORN, “Development of Fusion Fuel Cycle Technology at the Tritium Laboratory Karlsruhe: The Experiment CAPRICE,” Fusion Eng. Des., 28, 348 (1995); http://dx.doi.org/10.1016/0920-3796(95)90059-4.
  • G. SOAVE, “Equilibrium Constants from a Modified Redlich-Kwong Equation of State,” Chem. Eng. Sci., 27, 6, 1197 (1972); http://dx.doi.org/10.1016/0009-2509(72)80096-4.
  • O. REDLICH and J. N. S. KWONG, “On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions,” Chem. Rev., 44, 1, 233 (1949); http://dx.doi.org/10.1021/cr60137a013.
  • M. ALDEHANI, “Hydrogen-Water Isotope Exchange in a Trickle Bed Column by Process Simulation and 3D Computational Fluid Dynamics Modelling,” PhD Thesis, Lancaster University (2016).
  • I. A. RICHARDSON and J. W. LEACHMAN, “Thermodynamic Properties Status of Deuterium and Tritium,” AIP Conf. Proc., 1434, 57, 1841 (2012); http://dx.doi.org/10.1063/1.4707121.
  • A. S. FRIEDMAN, D. WHITE, and H. L. JOHNSTON, “Critical Constants, Boiling Points, Triple Point Constants, and Vapor Pressures of the Six Isotopic Hydrogen Molecules, Based on a Simple Mass Relationship,” J. Chem. Phys., 19, 1, 126 (1951); http://dx.doi.org/10.1063/1.1747959.
  • I. CRISTESCU and I. CRISTESCU, “Vapor-Liquid Equilibrium in Multicomponent Mixtures of Hydrogen’s Isotopes,” Advances in Cryogenic Engineering, p. 1167, Springer US, Boston, Massachusetts (2000); http://dx.doi.org/10.1007/978-1-4615-4215-5_27.
  • H. R. AZIZABADI, M. ZIABASHARHAGH, and M. MAFI, “Applicability of the Common Equations of State for Modeling Hydrogen Liquefaction Processes in Aspen HYSYS,” Gas Process. J., 9, 1 (2021); http://dx.doi.org/10.22108/gpj.2020.123736.1087.
  • D.-Y. PENG and D. B. ROBINSON, “A New Two-Constant Equation of State,” Ind. Eng. Chem. Fundam., 15, 1, 59 (1976); http://dx.doi.org/10.1021/i160057a011.
  • K. E. STARLING, Fluid Properties for Light Petroleum Systems, Gulf Publishing Company (1973).
  • L. A. WEBER, “A Modified Benedict-Webb-Rubin Equation of State for Gaseous and Liquid Oxygen,” National Bureau of Standards (1978); http://dx.doi.org/10.6028/NBS.IR.78-882.
  • J. NOH et al., “Estimation of Thermodynamic Properties of Hydrogen Isotopes and Modeling of Hydrogen Isotope Systems Using Aspen Plus Simulator,” J. Ind. Eng. Chem., 46, 1 (2017); http://dx.doi.org/10.1016/j.jiec.2016.07.053.
  • E. F. HAMMEL, “Some Calculated Properties of Tritium,” J. Chem. Phys., 18, 2, 228 (1950); http://dx.doi.org/10.1063/1.1747597.
  • Aspen HYSYS—Customization Guide,” Aspen Technology (2011).
  • M. GLUGLA et al., “Hydrogen Isotope Separation by Permeation Through Palladium Membranes,” J. Nucl. Mater., 355, 1–3, 47 (2006); http://dx.doi.org/10.1016/j.jnucmat.2006.04.003.
  • Q. ZENG et al., “Tritium Transport Analysis for Tokamak Exhaust Processing System of Tritium Plant,” Fusion Eng. Des., 159, 111955 (2020); http://dx.doi.org/10.1016/j.fusengdes.2020.111955.
  • J. XU and G. F. FROMENT, “Methane Steam Reforming, Methanation and Water-Gas Shift: I. Intrinsic Kinetics,” AlChE J., 35, 1, 88 (1989); http://dx.doi.org/10.1002/aic.690350109.
  • S. A. BIRDSELL and R. S. WILLMS, “Modeling and Data Analysis of a Palladium Membrane Reactor for Tritiated Impurities Cleanup,” Fusion Technol., 28, 3P1, 530 (1995); http://dx.doi.org/10.13182/FST95-A30457.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.