420
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Measurement of Hydrogen Permeation Fluxes Through Tungsten Deposition Layer Growing by Hydrogen Plasma Sputtering and Observation of Microstructure

ORCID Icon, , , &
Pages 540-549 | Received 27 Feb 2023, Accepted 10 Jan 2024, Published online: 31 Jan 2024

References

  • S. E. LEE et al., “Global Distribution of Tritium in JET with the ITER-Like Wall,” Nucl. Mater. Energy, 26, 100930 (2021); http://dx.doi.org/10.1016/j.nme.2021.100930.
  • M. SHIMADA and R. J. PAWELKO, “Tritium Permeability in Polycrystalline Tungsten,” Fusion Eng. Des., 146, Part B, 1988 (2019); http://dx.doi.org/10.1016/j.fusengdes.2019.03.083.
  • W. J. BYEON and S. J. NOH, “Deuterium Transport in ITER-Grade Tungsten,” J. Nucl. Mater., 544, 152675 (2021); http://dx.doi.org/10.1016/j.jnucmat.2020.152675.
  • Y. XU and Y. HIROOKA, “Effects of Double-Layer Tungsten Coatings on Hydrogen Isotopes Plasma-Driven and Gas-Driven Permeation Through F82H,” Nucl. Fusion, 58, 7, 076005 (2018); http://dx.doi.org/10.1088/1741-4326/aabdb7.
  • A. KIRSCHNER et al., “Modelling of Tungsten Erosion and Deposition in the Divertor of JET-ILW in Comparison to Experimental Findings,” Nucl. Mater. Energy, 18, 239 (2019); http://dx.doi.org/10.1016/j.nme.2019.01.004.
  • A. BARON-WIECHEC et al., “Global Erosion and Deposition Pattern in JET with the ITER-Like Wall,” J. Nucl. Mater., 463, 157 (2015); http://dx.doi.org/10.1016/j.jnucmat.2015.01.038.
  • P. PETERSSON et al., “Co-deposited Layers in the Divertor Region of JET-ILW,” J. Nucl. Mater., 463, 814 (2015); http://dx.doi.org/10.1016/j.jnucmat.2014.12.077.
  • Z. WANG et al., “Measurement of Thickness of Film Deposited on the Plasma-Facing Wall in the QUEST Tokamak by Colorimetry,” Rev. Sci. Instrum., 88, 9, 093502 (2017); http://dx.doi.org/10.1063/1.5000739.
  • A. KOIKE et al., “Evaluation of Hydrogen Retention Behavior for Damaged Tungsten Exposed to Hydrogen Plasma at QUEST with High Temperature Wall,” Fusion Eng. Des., 176, 113020 (2022); http://dx.doi.org/10.1016/j.fusengdes.2022.113020.
  • T. KAWASAKI et al., “Hydrogen Retention in a Tungsten Re-deposition Layer Formed by Hydrogen RF Plasma,” Fusion Sci. Technol., 48, 1, 581 (2005); http://dx.doi.org/10.13182/FST05-A992.
  • R. FRAUENFELDER, “Solution and Diffusion of Hydrogen in Tungsten,” J. Vac. Sci. Technol., 6, 3, 388 (1969); http://dx.doi.org/10.1116/1.1492699.
  • V. K. H. ALIMOV et al., “The Effect of Displacement Damage on Deuterium Retention in ITER-Grade Tungsten Exposed to Low-Energy, High-Flux Pure and Helium-Seeded Deuterium Plasmas,” J. Nucl. Mater., 420, 1–3, 370 (2012); http://dx.doi.org/10.1016/j.jnucmat.2011.10.025.
  • K. KATAYAMA et al., “Deuterium and Helium Release and Microstructure of Tungsten Deposition Layers Formed by RF Plasma Sputtering,” Fusion Sci. Technol., 54, 2, 549 (2008); http://dx.doi.org/10.13182/FST08-A1875.
  • H. ITO et al., “Hydrogen Permeation Behavior Through Tungsten Deposition Layer,” Fusion Eng. Des., 162, 112083 (2021); http://dx.doi.org/10.1016/j.fusengdes.2020.112083.
  • Y. HARA, K. KATAYAMA, and M. OYA, “Modelling of Hydrogen Permeation Behavior Through Tungsten Deposition Layer Growing on Nickel Substrate by Hydrogen Plasma Sputtering,” Fusion Eng. Des., 172, 112851 (2021); http://dx.doi.org/10.1016/j.fusengdes.2021.112851.
  • W. ECKSTEIN, “Reflection (Backscattering),” IPP 17/12, Max Planck Institute (2009); https://hdl.handle.net/11858/00-001M-0000-0026-F340-E.
  • B. L. DOYLE, “A Simple Theory for Maximum H Inventory and Release: A New Transport Parameter,” J. Nucl. Mater., 111&112, 628 (1982); http://dx.doi.org/10.1016/0022-3115(82)90277-X.
  • J. O. H. N. A. THORNTON, “Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings,” J. Vac. Sci. Technol., 11, 4, 666 (1974); http://dx.doi.org/10.1116/1.1312732.
  • K. MASUI et al., “Hydrogen Permeation Through Iron, Nickel, and Heat Resisting Alloys at Elevated Temperatures,” Trans. ISIJ, 19, 9, 547 (1979); http://dx.doi.org/10.2355/isijinternational1966.19.547.
  • T. TANABE et al., “Hydrogen Permeation Through Nickel,” Technol. Rep. Osaka Univ., 27, 1374 (1977).
  • W. M. ROBERTSON, “Hydrogen in Metals,” Julich-Conf., II, 449 (1972).
  • Y. YAMANISHI et al., “Hydrogen Permeation and Diffusion Through Pure Fe, Pure Ni and Fe-Ni Alloys,” Trans. Jpn. Inst. Met., 24, 1, 49 (1983); http://dx.doi.org/10.2320/matertrans1960.24.49.
  • E. D. MARENKOV et al., “Hydrogen Permeability Through Sandwich Membranes,” Bull. Russ. Acad. Sci. Phys., 74, 2, 245 (2010); http://dx.doi.org/10.3103/S1062873810020309.
  • A. D. LE CLARIE, “Permeation of Gases Through Solids,” Diff. Defect Data, 33, 1 (1983).
  • Y. XU et al., “Hydrogen Isotopes Transport in Sputter-Deposited Tungsten Coatings,” Fusion Eng. Des., 125, 239 (2017); http://dx.doi.org/10.1016/j.fusengdes.2017.07.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.