159
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Size, Morphology and Temperature Dependence of the Thermal Conductivity of Single-Walled Silicon Carbide Nanotubes

Pages 271-288 | Published online: 22 Mar 2011

References

  • Zhou , J. , Liu , J. , Yang , R. , Lao , C. , Gao , P. , Tummala , R. , Xu , N. S. and Wang , Z. L. 2006 . SiC-shell nanostructures fabricated by replicating ZnO Nano-objects: A technique for producing hollow nanostructures of desired shape . Small , 2 : 1344 – 1347 .
  • Li , J. , Porter , L. and Yip , S. 1998 . Atomistic modeling of finite-temperature properties of crystalline Beta-SiC: II. Thermal conductivity and effects of point defects . Journal of Nuclear Materials , 255 : 139 – 152 .
  • Porter , L. , Li , J. and Yip , S. 1997 . Atomistic modeling of finite-temperature properties of Beta-SiC: I. Lattice vibrations, heat capacity, and thermal expansion . Journal of Nuclear Materials , 246 : 53 – 59 .
  • Huang , H. C. and Ghoniem , N. 1993 . Neutron displacement damage cross-sections for SiC . Journal of Nuclear Materials , 199 : 221 – 230 .
  • Yang , W. , Araki , H. , Tang , C. , Thaveethavorn , S. , Kohyama , H. and Noda , S. T. 2005 . Single-crystal SiC nanowires with a thin carbon coating for stronger and tougher ceramic composites . Advanced Materials , 17 : 1519 – 1523 .
  • Sun , X. H. , Li , C. P. , Wong , W. K. , Wong , N. B. , Lee , C. S. , Lee , S. T. and Teo , B. T. 2002 . Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes . Journal of the American Chemical Society , 124 : 14464 – 14471 .
  • Keller , N. , Pham-Huu , C. , Ehret , G. , Keller , V. and Ledous , M. J. 2003 . Synthesis and characterisation of medium surface area silicon carbide nanotubes . Carbon , 41 : 2131 – 2139 .
  • Borowiak-Palen , E. , Ruemmeli , M. H. , Gemming , T. , Knupfer , M. , Biedermann , K. , Leonhardt , A. , Pihler , T. and Kalenczuk , R. J. 2005 . Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution . Journal of Applied Physics , 97 : 056102
  • Hu , J. Q. , Bando , Y. , Zhan , J. H. and Goberg , D. 2004 . Fabrication of ZnS/SiC nanocables, SiC-shelled ZnS nanoribbons (and sheets), and SiC nanotubes (and tubes) . Applied Physics Letters , 85 : 2932 – 2934 .
  • Nhut , J. M. , Vieira , R. , Pesant , L. , Tessonnier , J. P. , Keller , N. , Heat , G. , Pham-Huu , C. and Ledoux , M. J. 2002 . Synthesis and catalytic uses of carbon and silicon carbide nanostructures . Catalysis Today , 76 : 11 – 32 .
  • Taguchi , T. , Igawa , N. , Yamamoto , H. and Jitsukawa , S. 2005 . Synthesis of silicon carbide nanotubes . Journal of the American Ceramic Society , 88 : 459 – 461 .
  • Huczko , A. , Bystrzejewski , M. , Lange , H. , Fabianowska , A. , Cudzilo , S. , Panas , A. and Szala , M. 2005 . Combustion synthesis as a novel method for production of 1-D SiC nanostructures . The Journal of Physical Chemistry B , 109 : 16244 – 16251 .
  • Wang , Z. , Gao , F. , Li , J. , Zu , X. and Jweber , W. 2009 . Controlling electronic structures by irradiation in single-walled SiC nanotubes: A first-principles molecular dynamics study . Nanotechnology , 20 : 075708
  • Menon , M. , Richter , E. , Mavrandonakis , A. , Froudakis , G. and Androtis , A. N. 2004 . Structure and stability of SiC nanotubes . Physical Review B , 69 : 115322
  • Zhao , M. W. , Xia , Y. Y. , Li , F. , Zhang , R. Q. and Lee , S. T. 2005 . Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations . Physical Review B , 71 : 085312
  • Baierle , R. J. , Piquini , P. , Pl , Neves, L. and Miwa , R. H. 2006 . Ab initio study of native defects in SiC nanotubes . Physical Review B , 74 : 155425
  • Gali , A. 2006 . Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes . Physical Review B , 73 : 245415
  • Gali , A. 2007 . Ab initio theoretical study of hydrogen and its interaction with boron acceptors and nitrogen donors in single-wall silicon carbide nanotubes . Physical Review B , 75 : 085416
  • Wu , I. J. and Guo , G. Y. 2007 . Optical properties of SiC nanotubes: An ab initio study . Physical Review B , 76 : 035343
  • 20. Mavrandonakis , A. , Froudakis , G. E. , Schnell , M. and Muhlhauser , M. 2003 . From pure carbon to silicon-carbon nanotubes: An ab-initio study . Nano Letters , 3 : 1481 – 1484 .
  • Alam , K. M. M. 2008 . Silicon Carbide Nanotubes: Promises Beyond Carbon Nanotubes , 3 Arlington : PhD Diss, The University of Texas .
  • Zhang , Y. F. and Huang , H. C. 2008 . Stability of single-wall silicon carbide nanotubes-molecular dynamics simulations . Computational Materials Science , 43 : 664 – 669 .
  • 23. Alfieri , G. and Kimoto , T. 2009 . The structural and electronic properties of chiral SiC nanotubes: A hybrid density functional study . Nanotechnology , 20 : 285703
  • Terrones , M. 2004 . Unusual properties and structure of carbon nanotubes . Annual Review of Materials Research , 34 : 247 – 278 .
  • Crocombette , J. P. , Dumazer , G. , Hoang , N. Q. , Gao , F. and Weber , W. J. 2007 . Molecular dynamics modeling of the thermal conductivity of irradiated SiC as a function of cascade overlap . Journal of Applied Physics , 101 : 023527
  • Tersoff , J. 1988 . New empirical approach for the structure and energy of covalent systems . Physical Review B , 37 : 6991 – 7000 .
  • Tersoff , J. 1988 . Empirical interatomic potential for silicon with improved elastic properties . Physical Review B , 38 : 9902 – 9905 .
  • Tersoff , J. 1988 . Empirical interatomic potential for carbon, with applications to amorphous carbon . Physical Review Letter , 61 : 2879 – 2882 .
  • Tersoff , J. 1989 . Modeling solid-state chemistry: Interatomic potentials for multicomponent systems . Physical Review B , 39 : 5566 – 5568 .
  • Makeev , M. A. , Srivastava , D. and Menon , M. 2006 . Silicon carbide nanowires under external loads: An atomistic simulation study . Physical Review B , 74 : 165303
  • Zhang , K. , Stocks , G. M. and Zhong , J. 2007 . Melting and premelting of carbon nanotubes . Nanotechnology , 18 : 285703
  • Goumri-Said , S. , Kanoun , M. B. , Merad , A. E. , Merad , G. and Aourag , H. 2004 . Empirical molecular dynamics study of structural, elastic and thermodynamic properties of zinc-blend-like SiGe compound . Materials Science and Engineering B , 111 : 207 – 213 .
  • Kawamura , T. , Kangawa , Y. and Kakimoto , K. 2008 . Investigation of the thermal conductivity of a fullerene peapod by molecular dynamics simulation . Journal of Crystal Growth , 310 : 2301 – 2305 .
  • Tersoff , J. 1990 . Carbon defects and defect reactions in silicon . Physical Review Letter , 64 : 1757 – 1760 .
  • Tersoff , J. 1994 . Chemical order in amorphous silicon carbide . Physical Review B , 49 : 16349 – 16352 .
  • Sebastian , G. V. and Chen , G. 2000 . Molecular-dynamics simulation of thermal conductivity of silicon crystals . Physical Review B , 61 : 2651 – 2656 .
  • Lukes , J. R. and Zhong , H. 2005 . Thermal conductivity of individual single-wall carbon nanotubes . Journal of Heat Transfer , 129 : 705 – 716 .
  • Ziambaras , E. and Hyldgaard , P. 2006 . Phonon Knudsen flow in nanostructured semiconductor systems . Journal of Applied Physics , 99 : 054303
  • Irving , J. H. and Kirkwood , J. G. 1950 . The statistical mechanical theory of transport processes IV: The equations of hydrodynamics . Journal of Chemical Physics , 18 : 817 – 829 .
  • Shiomi , J. and Maruyama , S. 2008 . Molecular dynamics of diffusive-ballistic heat conduction in single-walled carbon nanotubes . Japanese Journal of Applied Physics , 47 : 2005 – 2009 .
  • Cao , J. X. , Yan , X. H. , Xiao , Y. and Ding , J. W. 2004 . Thermal conductivity of zigzag single-walled carbon nanotubes: Role of the umklapp process . Physical Review B , 69 : 073407
  • Rhew , J. H. 2003 . Physics and Simulation of Quasi-ballistic Transport in Nanoscale Transistors , 10 – 24 . PhD Diss, Purdue University .
  • Anantram , M. P. , Lundstrom , M. S. and Nikonov , D. E. 2008 . modeling of nanoscale devices . Proceedings of the IEEE , 96 : 1511 – 1550 .
  • Rhew , J. H. , Ren , Z. and Lundstrom , M. S. 2002 . A numerical study of ballistic transport in a nanoscale MOSFET . Solid-State Electronics , 46 : 1899 – 1906 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.