144
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Mechanical, Rheological and Thermal Properties of Polystyrene/1-Octadecanol Modified Carbon Nanotubes Nanocomposites

, , , &
Pages 209-217 | Received 21 Apr 2012, Accepted 05 Jan 2013, Published online: 04 Sep 2014

References

  • Wong, E. W., Sheehan, P. E., and Lieber, C. M. (1997) Nanobeam mechanics: Elasticity, strength and toughness of nanorods and nanotubes. Science, 277.
  • Yu, M., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., and Ruoff, R. S. (2000) Strength and breaking mechanism of multi-walled carbon nanotubes under tensile load. Science, 287: 637–640.
  • Coleman, J. N., Blau, W. J., Dalton, A. B., Munoz, E., Collins, S., Kim, B. G., Razal, J., Selvidge, M., Vieiro, G., and Baughman, R. H. (2003) Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. Appl. Phys. Lett., 82: 1682–1684.
  • Byrne, M. T., McNamee, W. P., and Gun’ko, Y. K. (2008) Chemical functionalization of carbon nanotubes for the mechanical reinforcement of polystyrene composites. Nanotechnology, 19: 415707.
  • Kota, A. K., Cipriano, B. H., Duesterberg, M. K., Gershon, A. L., Powell, D., Raghavan, S. R., and Bruck, H. A. (2007) Electrical and rheological percolation in polystyrene/MWCNT composites. Macromolecules, 40: 7400–7406.
  • Qian, D., Dickey, E. C., Andrews, R., and Rantell, T. (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett., 76: 2868–2870.
  • Biercuk, M. J., Llaguno, M. C., Radosavljevic, M., Hyun, J. K., and Johnson, A. T. (2002) Carbon nanotube composites for thermal management. Appl. Phys. Lett., 80: 2767–2769.
  • Shi, D., Lian, J., He, P., Wang, L. M., Xiao, F., Yang, L., Schulz, M. J., and Mast, D. B. (2003) Plasma coating of carbon nanofibers for enhanced dispersion and interfacial bonding in polymer composites. Appl. Phys. Lett., 83: 5301–5303.
  • Chen, X., Tao, F., Wang, J., Yang, H., Zou, J., Chen, X., and Feng, X. (2009) Concise route to styryl-modified multi-walled carbon nanotubes for polystyrene matrix and enhanced mechanical properties and thermal stability of composite. Mat. Sci. Engnrg. A, 499: 469–475.
  • Safadi, B., Andrews, R., and Grulke, E. A. (2002) Multi-walled carbon nanotube polymer composites: Synthesis and characterization of thin films. J. Appl. Polym. Sci., 84: 2660–2669.
  • Kim, S. T., Choi, H. J., and Hong, S. M. (2007) Bulk polymerized polystyrene in the presence of multi-walled carbon nanotubes. Colloid Polym. Sci., 285: 593–598.
  • Zhang, Z., Zhang, J., Chen, P., Zhang, B., He, J., and Hu, G. H. (2006) Enhanced interactions between multi-walled carbon nanotubes and polystyrene induced by melt mixing. Carbon, 44: 692–698.
  • Ma, P. C., Siddiqui, N. A., Marom, G., and Kim, J. K. (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites: Part A, 41: 1345–1367.
  • Sahoo, N. G., Rana, S., Cho, J. W., Li, L., and Chan, S. H. (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog. in Poly. Sci., 35: 837–867.
  • Chen, X., Tao, F., Wang, J., Yang, H., Zou, J., Chen, X., and Feng, X. (2009) Concise route to styryl-modified multi-walled carbon nanotubes for polystyrene matrix and enhanced mechanical properties and thermal stability of composite. Mat. Sci. Engnrg. A, 499: 469–475.
  • Thostenson, E. T. and Chou, T. W. (2002) Aligned multi-walled carbon nanotube-reinforced composites: Processing and mechanical characterization. J. Phys. D: Appl. Phys., 35: L77–80.
  • Andrews, R., Jacques, D., Minot, M., and Rantell, T. (2002) Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol. Mater. Eng., 287: 395–403.
  • Mitchell, C. A., Bahr, J. L., Arepalli, S., Tour, J. M., and Krishnamoorti, R. (2002) Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules, 35: 8825–8830.
  • Choi, H. J., Zhang, K., and Lim, J. Y. (2007) Multi-walled carbon nanotube/polystyrene composites prepared by in-situ bulk sonochemical polymerization. J. Nanosci. Nanotech., 7: 3400–3403.
  • Kota, A. K., Cipriano, B. H., Duesterberg, M. K., Gershon, A. L., Powell, D., Raghavan, S. R., and Bruck, H. A. (2007) Electrical and rheological percolation in polystyrene/MWCNT composites. Macromolecules, 40: 7400–7406.
  • Girei, S. A. (2010) Effects of Surface Modification of Carbon Nanotubes (CNT) on the Mechanical and Thermal Properties of Polypropylene/CNT Nanocomposites. Thesis, King Fahd University of Petroleum & Minerals.
  • Adedigba, A. A. (2010) Effects of Different Types of Surfactants Functionalized on the Surface of Carbon Nanotubes on the Mechanical and Thermal Properties of Natural Rubber/CNT Nanocomposites. Thesis, King Fahd University of Petroleum & Minerals.
  • Thomas, P. S., Abdullateef, A. A., Al-Harthi, M. A., Atieh, M. A., De, S. K., Rahaman, M., Chaki, T. K., Khastgir, D., and Bandyopadhyay, S. (2012) Electrical properties of natural rubber nanocomposites: Effect of 1-octadecanol functionalization of carbon nanotubes. J. Mat. Sci., 47: 3344–3349.
  • Amr, I. T., Al-Amer, A., Selvin, T. P., Al-Harthi, M., Girei, S. A., Sougrat, R., and Atieh, M. A. (2011) Effect of acid treated carbon nanotubes on mechanical, rheological and thermal properties of polystyrene nanocomposites. Composites Part B: Engineering, 42(6): 1554–1561.
  • Abuilaiwi, F. A., Laoui, T., Al-Harthi, M., and Atieh, M. A. (2010) Modification and functionalization of multi-walled carbon nanotube (MWCNT) via Fischer esterification. Arabian J. Sci. Engnrg., 35: 37–48.
  • Fragneaud, B., Masenelli-Varlot, K., Gonzalez-Montiel, A., Terrones, M., and Cavaillé, J. Y. (2008) Mechanical behavior of polystyrene grafted carbon nanotubes/polystyrene nanocomposites. Comp. Sci. Technol., 68: 3265–3271.
  • Coleman, J. N., Khan, U., Blau, W. J., and Gun’ko, Y. K. (2006) Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon, 44: 1624–1652.
  • Rieger, J. (1996) The glass transition temperature of polystyrene. J. Thermal Anal., 46: 965–972.
  • Williams, M. L., Landel, R. F., and Ferry, J. D. (1995) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc., 77: 3701–3707.
  • Goldbeck-Wood, G., Bliznyuk, V., Burlakov, V., Assender, H., Briggs, A., Tsukahara, Y., Anderson, K., and Windle, A. (2001) Surface structure of polystyrenes: Comparison of lattice chain simulations and scanning probe microscopy. American Physical Society, Annual March Meeting.
  • Liu, C., Zhang, J., He, J., and Hu, G. (2003) Gelation in carbon nanotube/polymer composites. Polymer, 44: 7529–7532.
  • Du, F., Scogna, R. C., Zhou, W., Brand, S., Fischer, J. E., and Winey, K. I. (2004) Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity. Macromolecules, 37: 9048–9055.
  • Huang, Y. Y., Ahir, S. V., and Terentjev, E. M. (2006) Dispersion rheology of carbon nanotubes in a polymer matrix. Phys. Rev. B, 73: 125422.
  • Fan, Z. and Advani, S. G. (2007) Rheology of multi-wall carbon nanotube suspensions. J. Rheol., 51: 585–604.
  • Abbasi, S., Carreau, P. J., Derdouri, A., and Moan, M. (2009) Rheological properties and percolation in suspensions of multi-walled carbon nanotubes in polycarbonate. Rheol. Acta, 48: 943–959.
  • Potschke, P., Fornes, T. D., and Paul, T. R. (2002) Rheological behavior of multi-walled carbon nanotube/polycarbonate composites. Polymer, 43: 3247–3255.
  • Mutel, A. T. and Kamal, M. R. (1991) Rheological properties of fiber-reinforce polymer melts. In Two Phase Polymer Systems; Utracki, L.A. (ed.), Carl Hanser: Munich, 305–331.
  • Kitano, T. Kataoka, T., and Nagatsuka, Y. (1984) Shear flow rheological properties of vinylon-and glass-fiber reinforced polyethylene melts. Rheol. Acta, 23: 20–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.