155
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

The Effect of Temperature and N2:C2H2 Flow Rate on the Growth of Carbon Nanotubes Synthesized by CCVD of Acetylene on Alumina–Zirconia Matrix

, &
Pages 245-252 | Received 27 Jul 2012, Accepted 01 Feb 2013, Published online: 04 Sep 2014

References

  • Louie, S. G. (2001) In: Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Dresselhaus, G. Dresselhaus, M. S. Avouris, P. (eds.), Springer: New York, p 113.
  • Cha, S. I., Kim, K. T., Lee, K. H., Mo, C. B., and Hong, S. H. (2005) Strengthening and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. Scr. Mater., 53: 793–797.
  • Rul, S., Lefevre-schlick, F., Capria, E., Laurent, Ch., and Peigney, A. (2004) Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites. Acta Mater., 52: 1061–1067.
  • Kuo, D.-H., and Su, M.-Y. (2007) The effect of hydrogen and temperature on the growth and microstructure of carbon nanotubes obtained by the Fe(CO)5 gas-phase-catalytic chemical vapor deposition. Surf Coat Technol., 202: 9172–9178.
  • Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., and Smalley, R. E. (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett., 243(1/2): 49–54.
  • Iijima, S., and Ichihashi, T. (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430):603–605.
  • Merchan-Merchan, W., Saveliev, A. V., Kennedy, L., and Jimenez, W. C. (2010) Combustion synthesis of carbon nanotubes and related nanostructures. Prog. Energy Combust. Sci., 36: 696–727.
  • Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. S., Zou, B. S., Zhou, W. Y., Zhou, R. A., and Wang, G. (1996) Large-scale synthesis of aligned carbon nanotubes. Science, 274: 1701–1703.
  • Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., and Provencio, P. N. (1998) Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science, 282: 1105–1107.
  • Zhao, N. Q., He, C. N., Jiang, Z. Y., Li, J., and Li, Y. (2006) Fabrication and growth mechanism of carbon nanotubes by catalytic chemical vapor deposition. Mater. Lett., 60: 159–163.
  • Borgna, A., Balzano, L., Herrera, J. E., Alvarez, W. E., Resasco, D. E. (2001) Relationship between the structure/composition of Co–Mo catalysts and their ability to produce single-walled carbon nanotubes by CO disproportionation. J. Catal., 204: 129–145.
  • Ding, F., and Bolton, K. (2006) Importance of supersaturated carbon concentrations in catalytic metal particles for single-walled carbon nanotube nucleation. Nanotechnology, 17: 543–548.
  • Hernadi, K., Konya, Z., Siska, A., Kiss, J., Oszko, A., Nagy, J. B., and Kiricsi, I. (2002) On the role of catalyst, catalyst support and their interaction in synthesis of carbon nanotubes by CCVD. Mater. Chem. and Phys., 77: 536–541.
  • Lee, C. J., Park, J., and Yu, J. A. (2002) Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition. Chem. Phys. Lett., 360: 250–255.
  • Kathyayini, H., Nagaraju, N., Fonseca, A., and Nagy, J. B. (2004) Catalytic activity of Fe, Co and Fe/Co supported on Ca and Mg oxides, hydroxides and carbonates in the synthesis of carbon nanotubes. J. Mol. Catal. A: Chem., 223: 129–136.
  • Lee, T. Y., Han, J., Choi, S. H., Yoo, J., Park, C., Jung, T., Yu, S., Lee, J., Yi, W., and Kim, J. M. (2003) Comparison of source gases and catalyst metals for growth of carbon nanotube. Surf. Coat. Technol., 169: 348–352.
  • Emmenegger, C., Bonard, J. M., Mauron, P., Sudan, P., Lepora, A., Grobety, B., Zuttel, A., and Schlapbach, L. (2003) Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism. Carbon, 41: 539–547.
  • Merkulov, V. I., Melechko, A. V., Guillorn, M. A., Lowndes, D. H., and Simpson, M. L. (2002) Growth rate of plasmasynthesized vertically aligned carbon nanofibers. Chem. Phys. Lett., 361: 492–498.
  • Li, H., Shi, C., Du, X., He, C., Li, J., and Zhao, N. (2008) The influences of synthesis temperature and Ni catalyst on the growth of carbon nanotubes by chemical vapor deposition. Mater. Lett., 62: 1472–1475.
  • Zhu, J., Yudasaka, M., and Iijima, S. (2003) A catalytic chemical vapor deposition synthesis of double-walled carbon nanotubes over metal catalysts supported on a mesoporous material. Chem. Phys. Lett., 380: 496–502.
  • Hernadi, K., Fonseca, A., Nagy, J. B., Bernaerts, D., Riga, J., and Lucas, A. (1996) Catalytic synthesis and purification of carbon nanotubes. Synth. Met., 77(1–3): 31–34.
  • Pérez-Cabero, M., Rodríguez-Ramos, I., and Guerrero-Ruíz, A. (2003) J. Catalysis, 215: 305–316.
  • Beitollahi, A., Pilehvari, Sh., Faghihi Sani, M. A., Moradi, H., and Akbarnejad, M. (2012) In situ growth of carbon nanotubes in alumina–zirconia nanocomposite matrix prepared by solution combustion method. Ceram Int., 38: 3273–3280.
  • Cullity, B.D. and Stock, S. R. (1978) Elements of X-ray Diffraction, second ed., Notre Dame, Addison-Wesley.
  • Aruna, S. T. and Rajam, K. S. (2004) Mixture of fuels approach for the solution combustion synthesis of Al2O3 ZrO2 nanocomposite. Mater. Res. Bull., 39: 157–167.
  • Gleiter, H. (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater., 48: 1–29.
  • Nalwa, H. S. (2002) Nanostructured Materials and Nanotechnology, Academic Press, San Diego.
  • Tuan, W. H., Chen, R. Z., Wang, T. C., Cheng, C. H., and Kuo, P. S. (2002) Mechanical properties of Al2O3/ZrO2 composites. Eur. Ceram. Soc., 22: 2827–2833.
  • Kibbel, B. and Heuer, A. H. (1986) Exaggerated grain growth in ZrO2–toughened Al2O3. J. Am. Ceram. Soc., 69: 231–236.
  • Green, D. J. (1982) Critical microstructures for microcracking in Al2O3–ZrO2 composites. J. Am. Ceram. Soc., 65: 610–614.
  • Fegley, B., White, P., and Bowen, H. K. (1985) Preparation of zirconia–alumina powders by zirconium alkoxide hydrolysis. J. Am. Ceram. Soc., 68: C–60–C-62.
  • Garvie, R. C. (1978) Stabilization of the tetragonal structure in zirconia microcrystals. J. Am. Chem. Soc., 82: 218.
  • Ram, S. and Mondal, A. (2004) X-ray photoelectron spectroscopic studies of Al3 +stabilized t-ZrO2 of nanoparticles. Appl. Surf. Sci., 221: 237–247.
  • Zhang, Z., Dewan, C., Kothari, S., Mitra, S., and Teeters, D. (2005) Carbon nanotubes synthesis, characteristics, and microbattery application. Mater. Sci. Eng., 116: 363–368.
  • Bower, C., Zhou, O., Zhu, W., Werder, D. J., and Jin, S. (2000) Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett., 77: 2767–2769.
  • Choi, G. S., Cho, Y. S., Hong, S. Y., Park, J. B., Son, K. H., and Kim, D. J. (2002) Carbon nanotubes synthesized by Ni assisted atmospheric pressure thermal chemical vapor deposition. J. Appl. Phys., 91: 3847–3854
  • Gohier, A., Ewels, C. P., Minea, T. M., and Djouadi, M. A. (2008) Carbon nanotube growth mechanism switches from tipto base-growth with decreasing catalyst particle size. Carbon, 46: 1331–1338.
  • Dai, H., Rinzler, A. G., Nikolaev, P., Thess, A., Colbert, D. T., and Smalley, R. E. (1996) Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chem. Phys. Lett., 260: 471–475.
  • Bottani, C. E., Castiglioni, C., and Zerbi, G. (2004) Raman scattering in nanostructures. In: Nalwa, H. S. (ed.), Encyclopedia of Nanoscience and Nanotechnology 9: 225–272.
  • Porwal, D., Mukhopadhyay, K., Ram, K., and Mathur, G. N. (2007) Investigation of the synthesis strategy of CNTs from CCVD by thermal analysis. Thermochim. Acta, 463: 53–59.
  • Chai, S.-P., Sharif Zein, S. H., and Mohamed, A. R. (2007) The effect of reduction temperature on Co-Mo/Al2O3 catalysts for carbon nanotubes formation. Appl. Catal. A, 326: 173–179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.