159
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Prediction of Superoxide Quenching Activity of Fullerene (C60) Derivatives by Genetic Algorithm-Support Vector Machine

, , &
Pages 290-299 | Received 05 Apr 2013, Accepted 20 Apr 2013, Published online: 10 Sep 2014

References

  • Patel, S., and Katyare, S. (2006) A comparative study of reactive oxygen species (ROS) related parameters in rat tissues. Indian. J. Clin. Biochem., 21: 48–53.
  • Katyare, S. S., and Billimoria, F. R. (1989) Effect of experimentally induced thyrotoxicosis on oxidative energy metabolism in rat heart mitochondria. J. Biosci., 14: 329–339.
  • Dinakar, C., Abhaypratap, V., Yearla, S., Raghavendra, A., and Padmasree, K. (2010) Importance of ROS and antioxidant system during the beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Planta., 231: 461–474.
  • Halliwell, B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem., 59: 1609–1623.
  • Chance, B., Sies, H., and Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs. Physiol. Rev., 59: 527–605.
  • Halliwell, B., and Gutteridge, J. M. (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J., 219: 1–14.
  • Forsberg, L., de Faire, U., and Morgenstern, R. (2001) Oxidative stress, human genetic variation, and disease. Arch. Biochem. Biophys., 389: 84–93.
  • Ambrosone, C. B. (2000) Oxidants and antioxidants in breast cancer. Antioxid. Redox Signaling, 2: 903–917.
  • Park, S. W., Lee, C. H., Lee, J. G., Kim, L. W., Shin, B. S., Lee, B. J., and Kim, Y. H. (2011) Protective effects of atypical antipsychotic drugs against MPP+-induced oxidative stress in PC12 cells. Neurosci. Res., 69: 283–290.
  • Zhou, X., Ji, W.-J., Zhu, Y., He, B., Li, H., Huang, T.-G., and Li, Y.-M. (2007) Enhancement of endogenous defenses against ROS by supra-nutritional level of selenium is more safe and effective than antioxidant supplementation in reducing hypertensive target organ damage. Med. Hypotheses., 68: 952–956.
  • He, Q., Zhang, J., Chen, F., Guo, L., Zhu, Z., and Shi, J. (2010) An anti-ROS/hepatic fibrosis drug delivery system based on salvianolic acid B loaded mesoporous silica nanoparticles. Biomaterials, 31: 7785–7796.
  • Lee, D.-H., Kim, C.-S., and Lee, Y. J. (2011) Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem. Toxicol., 49: 271–280.
  • Beuerle, F., Lebovitz, R., and Hirsch, A. (2008) Antioxidant properties of water-soluble fullerene derivatives. In: Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes, Cataldo, F., and Ros, T. (eds.) (Springer: Netherlands), 51–78.
  • Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F., and Smalley, R. E. (1985) C60: Buckminsterfullerene. Nature, 318: 162–163.
  • McEwen, C. N., McKay, R. G., and Larsen, B. S. (1992) C60 as a radical sponge. J. Am. Chem. Soc., 114: 4412–4414.
  • Krusic, P. J., Wasserman, E., Keizer, P. N., Morton, J. R., and Preston, K. F. (1991) Radical reactions of C60. Science, 254: 1183–1185.
  • Fujita, T. (1995) Qsar and drug design: New developments and applications, Elsevier.
  • Hou, T. J., Wang, J. M., Liao, N., and Xu, X. J. (1999) Applications of genetic algorithms on the structure–activity relationship analysis of some cinnamamides. J. Chem. Inf. Comput. Sci, 39: 775–781.
  • Hansch, C., and Fujita, T. (1964) p–σ–π analysis. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc., 86: 1616–1626.
  • Lee, D. L., Kollman, P. A., Marsh, F. J., and Wolff, M. E. (1977) Quantitative relations between steroid structure and binding to putative progesterone receptors. J. Med. Chem., 20: 1139–1146.
  • Zhou, Y.-x., Xu, L., Wu, Y.-p., and Liu, B.-l. (1999) A QSAR study of the antiallergic activities of substituted benzamides and their structures. Chemom. Intell. Lab. Syst., 45: 95–100.
  • Afantitis, A., Melagraki, G., Sarimveis, H., Koutentis, P., Igglessi-Markopoulou, O., and Kollias, G. (2010) A combined LS-SVM & MLR QSAR workflow for predicting the inhibition of CXCR3 receptor by quinazolinone analogs. Mol. Divers., 14: 225–235.
  • Vapnik, V. (1998) Statistical learning theory, Wiley: New York.
  • Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992) A training algorithm for optimal margin classifiers (Proceedings of the fifth annual workshop on Computational learning theory, ACM, Pittsburgh, Pennsylvania, USA, pp 144–152).
  • Noble, W. S. (2006) What is a support vector machine? Nat. Biotech., 24(12): 1565–1567.
  • Hernández, N., Kiralj, R., Ferreira, M. M. C., and Talavera, I. (2009) Critical comparative analysis, validation and interpretation of SVM and PLS regression models in a QSAR study on HIV-1 protease inhibitors. Chemom. Intell. Lab. Syst., 98: 65–77.
  • Zhu, H. W., Fang, H., Cheng, X. C., Wang, Q., Zhang, L., Feng, J. H., and Xu, W. F. (2009) 3D-QSAR study of pyrrolidine derivatives as matrix metalloproteinase-2 inhibitors. Med. Chem. Res., 18: 683–701.
  • Habibi-Yangjeh, A., Pourbasheer, E., and Danandeh-Jenagharad, M. (2009) Application of principal component-genetic algorithm-artificial neural network for prediction acidity constant of various nitrogen-containing compounds in water. Monatsh. Chem., 140: 15–27.
  • Belousov, A. I., Verzakov, S. A., and von Frese, J. (2002) A flexible classification approach with optimal generalisation performance: support vector machines. Chemom. Intell. Lab. Syst., 64: 15–25.
  • Burbidge, R., Trotter, M., Buxton, B., and Holden, S. (2001) Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput. Chem., 26: 5–14.
  • Hong, S. J., and Weiss, S. M. (2001) Advances in predictive models for data mining. Pattern Recogn. Lett., 22: 55–61.
  • Pourbasheer, E., Beheshti, A., Khajehsharifi, H., Ganjali, M., and Norouzi, P. (2012) QSAR study on hERG inhibitory effect of kappa opioid receptor antagonists by linear and non-linear methods. Med. Chem. Res.: 1–12.
  • Sánchez, A. V. D. (2003) Advanced support vector machines and kernel methods. Neurocomputing, 55: 5–20.
  • Bernhard S., Koji T., and Vert, J.-P. (2004) Kernel methods. In: Computational Biology, MIT Press, p 416.
  • Pourbasheer, E., Riahi, S., Ganjali, M. R., and Norouzi, P. (2009) Application of genetic algorithm-support vector machine (GA-SVM) for prediction of BK-channels activity. Eur. J. Med. Chem., 44: 5023–5028.
  • Shawe-Taylor, J., and Cristianini, N. (2004) Kernel methods for pattern analysis, Cambridge University Press, New York.
  • Holland, J. H. (1975) Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, pp 183.
  • Witte, P., Beuerle, F., Hartnagel, U., Lebovitz, R., Savouchkina, A., Sali, S., Guldi, D., Chronakis, N., and Hirsch, A. (2007) Water solubility, antioxidant activity and cytochrome C binding of four families of exohedral adducts of C60 and C70. Org. Biomol. Chem., 5: 3599–3613.
  • Katritzky, A. R., Karelson, M., and Petrukhin, R. (1994) CODESSA, version 1st ed., University of Florida Gainesville, Florida
  • Leardi, R., Boggia, R., and Terrile, M. (1992) Genetic algorithms as a strategy for feature selection. J. Chemometr., 6: 267–281.
  • Cartwright, H. M. (1993) Applications of artificial intelligence in chemistry Published by. Oxford University Press: Oxford.
  • Agrawal, V. K., and Khadikar, P. V. (2001) QSAR prediction of toxicity of nitrobenzenes. Bioorg. Med. Chem., 9: 3035–3040.
  • Eriksson, L., Johansson, E., Müller, M., and Wold, S. (2000) On the selection of the training set in environmental QSAR analysis when compounds are clustered. J. Chemometrics, 14: 599–616.
  • Pourbasheer, E., Riahi, S., Ganjali, M., and Norouzi, P. (2010) Quantitative structure–activity relationship (QSAR) study of interleukin-1 receptor associated kinase 4 (IRAK-4) inhibitor activity by the genetic algorithm and multiple linear regression (GA-MLR) method. J. Enzym. Inhib. Med. Chem., 25:844–853.
  • Pourbasheer, E., Banaei, A., Aalizadeh, R., Ganjali, M. R., Norouzi, P., Shadmanesh, J., and Methenitis, C. (2014) Prediction of PCE of fullerene (C60) derivatives as polymer solar cell acceptors by genetic algorithm-multiple linear regression, J. Ind. Eng. Chem., doi:10.1016/j.jiec.2014.05.016
  • Pourbasheer, E., Riahi, S., Ganjali, M. R., and Norouzi, P. (2011) Prediction of solubility of fullerene C60 in various organic solvents by genetic algorithm-multiple linear regression. Fuller. Nanotub. Car. N., 19: 585–598.
  • Pourbasheer, E., Riahi, S., Ganjali, M., and Norouzi, P. (2011) QSAR study of C allosteric binding site of HCV NS5B polymerase inhibitors by support vector machine. Mol. Divers., 15: 645–653.
  • Zefirov, N. S., Kirpichenok, M. A., Ismailov, F. F., and Trofimov, M. I. (1987) Calculation schemes for atomic electronegativities in molecular graphs within the framework of sanderson principle. Dokl. Akad. nauk SSSR, 296: 883–887.
  • Kirpichenok, M. A., and Zefirov, N. S. (1987) Electronegativity and geometry of molecules .1. principles of developed approach and analysis of the effect of nearest electrostatic interactions on the bond length in organic-molecules. Zh. Org. Khim., 23: 673–691.
  • Golmohammadi, H. (2009) Prediction of octanol–water partition coefficients of organic compounds by multiple linear regression, partial least squares, and artificial neural network. J. Comput. Chem., 30: 2455–2465.
  • Randic, M. (1975) Characterization of molecular branching. J. Am. Chem. Soc., 97: 6609–6615.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.