47
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

The High-Frequency Performance of Hetero-Material-Gate CNTFETs with Gate Underlap

, , , , &
Pages 315-319 | Received 10 May 2013, Accepted 04 Jun 2013, Published online: 10 Sep 2014

References

  • Hailiang, Z., Minxuan, Z., Liang, F. (July 2011) Effect of quantum capacitance in dual-gate-material MOS-like carbon nanotube field effect transistors. Comput. Eng. Sci., 33(2): 70–74.
  • Lu, R. F., Lu, Y. P., Lee, S. Y., Han, K. L., and Deng, W. Q. (2009) Terahertz response in single-walled carbon nanotube transistor: A real-time quantum dynamics simulation. Nanotechnology, 20(50): 505401.
  • Kienle, D., and Léonard, F. (2000) Terahertz response of carbon nanotube transistors. Phys. Rev. Lett., 103(2): 026601.
  • Tans, S. J., Verschueren, A. R. M., and Dekker, C. (1998) Room-temperature transistor based on a single carbon nanotube. Nature, 393(7): 49–52.
  • Alam, K., and Lake, R. (2007) Role of doping in carbon nanotube transistors with source/drain underlaps. IEEE Trans. Nanotechnol., 6(6): 652–658.
  • Kordrostami, Z., Sheikhi, M. H., and Zarifkar, A. (2012) Influence of channel and underlap engineering on the high-frequency and switching performance of CNTFETs. IEEE Trans. Nanotechnol., 11(3): 526–533.
  • Orouji, A., and Arefinia, Z. (2009) Detailed simulation study of a dual material gate carbon nanotube field-effect transistor. Phys. E: Low-Dimens. Syst. Nanostruct., 41(10): 552–557.
  • Arefinia, Z., and Orouji, A. A. (2009) Quantum simulation study of a new carbon nanotube field–effect transistor with electrically induced source/drain extension. IEEE Trans. Device Mater. Reliab., 9(2): 237–243.
  • Datta, S. (2000) Nanoscale device modeling: the Green's function method. Superlatt. Microstruct., 28(4): 253–278.
  • Guo, J., Hasan, S., Javey, A., Bosman, G., and Lundstrom, M. (2005) Assessment of high-frequency performance potential for carbon nanotube transistors. IEEE Trans. Nanotechnol., 4(6): 715–721.
  • Venugopal, R., Ren, Z., Datta, S., Lundstrom, M., and Jovanovic, D. (2002) Simulating quantum transport in nanoscale MOSFETs: Real versus mode–space approaches. J. Appl. Phys., 92(7): 3730–3739.
  • Wang, W., Gu, N., Sun, J. P., and Mazumder, P. (2006) Gate current modeling of high-k stack nanoscale MOSFETs. Solid-State Electron., 50(9–10): 1489–1494.
  • Sun, J. P., Wang, W., Toyabe, T., Gu, N., and Mazumder, P. (2006) Modeling of gate current and capacitance in nanoscale–MOS structures. IEEE Trans. Electron. Dev., 53(12): 2950–2957.
  • Fiori, G., Iannaccone, G., and Klimeck, G. (2006) A three-dimensional simulation study of the performance of carbon nanotube field–effect transistors with doped reservoirs and realistic geometry. IEEE Trans. Electron. Dev., 53(8): 1782–1788.
  • Ren, Z., Venugopal, R., Goasguen, S., Datta, S., and Lundstrom, M. (2003) NanoMOS2.5: A two-dimensional simulator for quantum transport in double-gate MOSFETs. IEEE Trans. Electron. Dev., 50(9): 1914–1925.
  • International Technology Roadmap for Semiconductors, available at http://public.itrs.net.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.