252
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Manganese Oxides/Graphene Composite as Cathode Catalyst for the Oxygen Reduction Reaction in Alkaline Solution

&
Pages 824-830 | Received 08 Jan 2015, Accepted 15 Jan 2015, Published online: 18 May 2015

References

  • Shi, Z. Y., Periasamy, A. P., Hsu, P. C., and Chang, H. T. (2013) Synthesis and catalysis of copper sulfide/carbon nanodots for oxygen reduction in direct methanol fuel cells. Chang, Appl. Catal., B, 132–133: 363–369.
  • Sun, Z. P., Zhang, X. G., Liang, Y. Y., and Li, H. L. (2009) Highly dispersed Pd nanoparticles on covalent functional MWNT surfaces for methanol oxidation in alkaline solution. Electrochem. Commun., 11: 557–561.
  • Xu, C. W., Cheng, L. Q., Shen, P. K., and Liu, Y. L. (2007) Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem. Commun., 9: 997–1001.
  • Zhang, Y. P., Hu, Y. Y., Li, S. Z., Sun. J., and Hou, B. (2011) Manganese dioxide-coated carbon nanotubes as an improved cathodic catalyst for oxygen reduction in a microbial fuel cell. J. Power Source., 196: 9284–9289.
  • Mao, L. Q., Zhang, D., Sotomura, T., Nakatsu, K., Koshiba, N., and Ohsaka, T. (2003) Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochim. Acta., 48: 1015–1021.
  • Zhang, L. X., Liu, C. S., Zhuang, L., Li, W. S., Zhou, S. G., and Zhang, J. T. (2009)Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells. Biosens. Bioelectron., 24: 2825–2829.
  • Kim, H. and Popov, B. N. (2003) Synthesis and Characterization of MnO2-Based Mixed Oxides as Supercapacitors. J. Electrochem. Soc., 150: D56–D62.
  • Raymundo-Pinero, E., Khomenko, V., Frackowiak, E., and Beguin, F. (2005) Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors. J. Electrochem. Soc., 152: A229–A235.
  • Zhang, L. L., Wei, T. X., Wang. W. J., and Zhao, X. S. (2009) Manganese oxide–carbon composite as supercapacitor electrode materials. Microporous Mesoporous Mater., 123: 260–267.
  • Lee, J. S., Lee, T., Song, H. K., Cho, J., and Kim, B. S. (2011) Ionic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn–air batteries. Energy Environ. Sci., 4: 4148–4154.
  • Fischer, A. E., Pettigrew, K. A., Rolison, D. R., Stroud, R. M., and Long, J. W. (2007) Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors. Nano Lett., 7: 281–286.
  • Wen, Q., Wang, S. Y., Yan, J., Cong, L. J., Peng, Z. C., Ren, Y. M., and Fan, Z. G. (2012) MnO2 graphene hybrid as an alternative cathodic catalyst to platinum in microbial fuel cells. J. Power Source, 216: 187–191.
  • Guo, S. J., Wen, D., Zhai,Y. M. Dong, S. J., and Wang, E. K. (2010) Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: One-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano, 4: 3959–3968.
  • Wang, H. L., Cui, L. F., Yang, Y., Casalongue, H. S., Robinson, J. T., Liang,Y. Y., Cui, Y., and Dai, H. J. (2010) Mn3O4 graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc., 132: 13978–13980
  • Sun, Y. Q., Wu, Q., and Shi, G. Q. (2011) Graphene based new energy materials. Energy Environ. Sci., 4: 1113–1132.
  • William S. Hummers Jr., Richard E. Offeman. Preparation of Graphitic oxide. J. Am. Chem. Soc. 1958, 80(16), 1339.
  • Ferrari, A. C. and Robertson, J. (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B: Condens. Matter., 61: 14095–14107.
  • Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., and Ruoff, R. S. (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45: 1558–1565.
  • Gao, T., Glerup, M., Krumeich, F., Nesper, R., Fjellvag, H., and Norby, P. (2008) Microstructures and spectroscopic properties of cryptomelane-type manganese dioxide nanofibers. J. Phys. Chem. C., 112: 13134–13140.
  • Zhao, X., Zhang, L. L., Murali, S., Stoller, M. D., Zhang, Q. H., Zhu, Y. W., and Ruoff, R. S. (2012) Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors. ACS Nano, 6: 5404–5412.
  • Nie, R. F., Shi, J. J. Xia, S. X., Shen, L., Chen, P., Hou, Z. Y., and Xiao, F.-S. (2012) MnO2/graphene oxide: a highly active catalyst for amide synthesis from alcohols and ammonia in aqueous media. J. Mater. Chem., 22: 18115–18118.
  • Koninck, M. D. and Marsan, B. (2008) MnxCu1−xCo2O4 used as bifunctional electrocatalyst in alkaline medium. Electrochim.Acta, 53: 7012–7021.
  • Qiao, J. L., Xu, L., Ding, L., Shi, P. H., Zhang, L., Baker, R., and Zhang, J. J. (2013) Effect of KOH concentration on the oxygen reduction kinetics catalyzed by heat-treated Co-Pyridine/C electrocatalysts. Int. J.Electrochem. Sci., 8: 1189–1208.
  • Hu, F. P., Zhang, X. G., Xiao, F., and Zhang, J. L. (2005) Oxygen reduction on Ag–MnO2/SWNT and Ag–MnO2/AB electrodes. Carbon, 43: 2931–2936.
  • Gao, H. L., Li, Z. Y., and Qin, X. (2014) Synthesis of carbon microspheres loaded with manganese oxide as air cathode in alkaline media. J. Power Source, 248: 565–569.
  • Gong, K. P., Yu, P., Shu, L., Xiong, S. X., and Mao, L. Q. (2007) Polymer-assisted synthesis of manganese dioxide/carbon nanotube nanocomposite with excellent electrocatalytic activity toward reduction of oxygen. J. Phys. Chem. C, 111: 1882–1887.
  • Cao, Y. L., Yang, H. X., Ai, X. P., and Xiao, L. F. (2003) The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution. J. Electroanal. Chem., 557: 127–134.
  • Verma, A., Jha, A. K., and Basu, S. (2005) Manganese dioxide as a cathode catalyst for a direct alcohol or sodium borohydride fuel cell with a flowing alkaline electrolyte. J. Power Sources, 141: 30–34.
  • Cheng, F. Y., Su, Y., Liang, J., and Tao, Z. L. (2010) MnO2-Based Nanostructures as Catalysts for Electrochemical Oxygen Reduction in Alkaline Media. Chem. Mater., 22: 898–905.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.