276
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Enhanced electrical and thermal conductivity of modified poly(acrylonitrile-co-butadiene)-based nanofluid containing functional carbon black-graphene oxide

Pages 278-285 | Received 25 Jan 2016, Accepted 09 Feb 2016, Published online: 03 Mar 2016

References

  • Soma, K., Babu, J. S.C. (2015) Factors Influencing the Rheological Behavior of Carbon Nanotube Water-Based Nanofluid. Fuller. Nanotub. Carbon Nanostruct. 23(8): 750–754.
  • Behera, M., and Ram, S. (2015) Poly(vinyl pyrrolidone) Mediated Solubilization and Stabilization of Fullerene C60 in the Form of Nanofluid in an Alcoholic Medium. Fuller. Nanotub. Carbon Nanostruct. 23(12): 1064–1072.
  • Behera, M., and Ram, S. (2015) Variation of optical properties, rheology, and microstructure in fullerene/poly (vinyl pyrrolidone) nanofluids with fullerene content in n-butanol. Fuller. Nanotub. Carbon Nanostruct. DOI:10.1080/1536383X.2015.1130703.
  • Behera, M., and Ram, S. (2015) Mechanism of solubilizing fullerene C60 in presence of poly (vinyl pyrrolidone) molecules in water. Fuller. Nanotub. Carbon Nanostruct. 23(10): 906–916.
  • Philip, J., and Shima, P.D. (2012) Thermal properties of nanofluids. Adv. Coll. Interfac. Sci. 183: 30–45.
  • Halelfadl, S., Maré, T., and Estellé, P. (2014) Efficiency of carbon nanotubes water based nanofluids as coolants. Experim. Therm. Fluid Sci. 53: 104–110.
  • Taylor, R., Coulombe, S., Otanicar, T., Phelan, P., Gunawan, A., Lv, W., Rosengarten, G., Prasher, R., and Tyagi, H. (2013) Small particles, big impacts: a review of the diverse applications of nanofluids. J. Appl. Phys. 113(1): 011301.
  • Indhuja, A., Suganthi, K.S., Manikandan, S., and Rajan, K.S. (2013) Viscosity and thermal conductivity of dispersions of gum arabic capped MWCNT in water: influence of MWCNT concentration and temperature. J. Taiwan Institut. Chem. Engineer. 44: 474–479.
  • Chandrasekar, M., Suresh, S., Senthilkumar, T. (2012) Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids-A review. Renew. Sustain. Ener. Rev. 16(6): 3917–3938.
  • Martin-Gallego, M., Verdejo, R., Khayet, M., de Zarate, J.M.O., Essalhi, M., Lopez-Manchado, M.A. (2011). Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites. Nanoscale Res.Lett. 6(1): 1–7.
  • Huang, X., Qi, X., Boey, F., Zhang, H. (2012) Graphene-based composites. Chem. Soc. Rev. 41: 666–686.
  • Tang, Q., Zhou, Z., Chen, Z. (2013) Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale, 5(11): 4541–4583.
  • Chowdhury, S., Balasubramanian, R. (2014) Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv. Coll. Interfac. Sci., 204: 35–56.
  • Bao, W., Liu, G., Zhao, Z., Zhang, H., Yan, D., Deshpande, A., LeRoy, B., Lau, C.N. (2010) Lithography-free fabrication of high quality substrate-supported and freestanding graphene devices. Nano Res. 3(2): 98–102.
  • Ghadimi, A., Saidur, R., Metselaar, H.S.C. (2011) A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer. 54(17): 4051–4068.
  • Mahian, O., Kianifar, A., Kalogirou, S.A., Pop, I., Wongwises, S. (2013) A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Trans., 57(2): pp.582–594.
  • Han, D., Meng, Z., Wu, D., Zhang, C., Zhu, H. (2011) Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res. Lett. 6(1): 1–7.
  • Hwang, Y., Lee, J.K., Lee, J.K., Jeong, Y.M., Cheong, S.I., Ahn, Y.C., Kim, S.H. (2008) Production and dispersion stability of nanoparticles in nanofluids. Pow. Technol., 186(2): 145–153.
  • Choi, C., Jung, M., Choi, Y., Lee, J., Oh, J. (2011) Tribological properties of lubricating oil-based nanofluids with metal/carbon nanoparticles. J. Nanosci. Nanotechnol. 11: 368–371.
  • Patel, H.E., Das, S.K., Sundararajan, T., Nair, A.S., George, B., Pradeep, T. (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects. Appl. Phys. Lett. 83(14): 2931–2933.
  • Balandin, A.A. (2011) Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10(8): 569–581.
  • Xue, P.F., Wang, J.B., Bao, Y.B., Wu, C.F. (2012) Synthesis and characterization of functionalized carbon black/poly(vinyl alcohol) high refractive index nanocomposites. Chines. J. Polym. Sci. 30: 652–663.
  • Zhang, T., Liu, P., Sheng, C., Duan, Y., Zhang, J. (2014) A green and facile approach for the synthesis of water-dispersible reduced graphene oxide based on ionic liquids. Chem. Commun., 50: 2889–2892.
  • Shah, R., Kausar, A., Muhammad, B. (2015) Exploration of Polythiophene/Graphene, Poly(methyl methacrylate)/Graphene and PTh-co-PMMA/Graphene hybrids obtainedvia in-situ Technique. J. Plast. Film. Sheet. 31(2): 144–157.
  • Khan, D.M., Kausar, A., Salman, S.M. (2016) Buckypapers of Polyvinyl chloride/Poly(styrene-co-maleic anhydride) Blend Intercalated Graphene oxide-Carbon nanotube Nanobifiller: Physical Property Exploration. Fuller. Nanotub. Carbon Nanostruct., DOI: 10.1080/1536383X.2016.1138105.
  • Huang, J.C. (2002) Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol. 21(4): 299–313.
  • Szabó, T., Berkesi, O., Forgó, P., Josepovits, K., Sanakis, Y., Petridis, D., Dékány, I. (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater., 18(11): 2740–2749.
  • Potts, J.R., Dreyer, D.R., Bielawski, C.W., and Ruoff, R.S. (2010) Graphene-based polymer nanocomposites. Polymer. 52: 5–25.
  • Zhang, K., Zhang, Y., and Wang, S. (2013) Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci. Rep. 3: 3448–3454.
  • Gao, J.F., Li, Z.M., Meng, Q.J. and Yang, Q. (2008) CNTs/UHMWPE composites with a two-dimensional conductive network. Mater. Lett. 62: 3530–3532.
  • Mehrali, M., Sadeghinezhad, E., Latibari, S.T., Kazi, S.N., Mehrali, M., Zubir, M.N.B. M., and Metselaar, H.S.C. (2014) Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res. Lett. 9: 15.
  • Baby, T.T., and Ramaprabhu, S. (2011) Synthesis and nanofluid application of silver nanoparticles decorated graphene. J. Mater. Chem. 21: 9702–9709.
  • Kole, M., and Dey, T.K. (2013) Enhanced thermophysical properties of copper nanoparticles dispersed in gear oil. Appl. Therm. Eng. 56: 45–53.
  • Pal, R. (2014) A Novel Method to Determine the Thermal Conductivity of Interfacial Layers Surrounding the Nanoparticles of a Nanofluid. Nanomaterials. 4: 844–855.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.