101
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Surface modification of activated carbon fabric with ozone. Part 3: Thermochemical aspects and electron spin resonance

, , &
Pages 406-413 | Received 17 Mar 2016, Accepted 25 Mar 2016, Published online: 06 Apr 2016

References

  • Cataldo, F., Putz, M. V., Ursini, O., and Angelini, G. (2016) Surface modification of activated carbon fabric with ozone. Part 1. Kinetics and oxidation degree. Fullerenes, Nanot. Carbon Nanostruct., published online DOI: 10.1080/1536383X.2016.1154849.
  • Cataldo, F., Putz, M. V., Ursini, O., and Angelini, G. (2016) Surface modification of activated carbon fabric with ozone. Part 2. Thermal analysis with TGA-FTIR and DTA. Fullerenes, Nanot. Carbon Nanostruct., published online DOI:10.1080/1536383X.2016.1172068.
  • (a) Cataldo, F. (2015) Thermal stability, decomposition enthalpy, and Raman spectroscopy of 1-alkene secondary ozonides. Tetrahedron Lett.,, 56: 994–998. (b) Cataldo, F. (2015) Ethyl oleate and ethyl elaidate ozonides: thermal decomposition and photolysis. Ozone: Sci. Engin., 37: 431–440. (c) Cataldo, F., Putz, M. V., Ursini, O., Hafez, Y., and Iglesias-Groth, S. (2015) On the action of ozone on Single-Wall Carbon Nanohorns (SWCNH). Fullerenes Nanot. Carbon Nanostruct., 23: 1095–1102. (d) Cataldo, F. (2014) Thermochemistry of ozonides decomposition. European Chem. Bull., 3: 227–233. (e) Cataldo, F. (2013) Chemical and thermochemical aspects of the ozonolysis of ethyl oleate: Decomposition enthalpy of ethyl oleate ozonide. Chem. Phys. Lipids, 175: 41–49.
  • (a) Cataldo, F., Hafez, Y., and Iglesias-Groth, S. (2015) Thermal decomposition of ozonized C70 fullerene and its reducing properties toward silver ions. Fullerenes Nanot. Carbon Nanostruct., 23: 1037–1042. (b) Cataldo, F. and Iglesias-Groth, S. (2014) A Differential Scanning Calorimetric (DSC) study on heavy ozonized C60 fullerene. Fullerenes Nanot. Carbon Nanostruct., 23: 253–258. (c) Cataldo, F. (2014) Synthesis of silver nanoparticles by the action of heavy ozonized C60 fullerene on silver nitrate solutions. Fullerenes Nanot. Carbon Nanostruct., 23: 523–529.
  • Haynes, W. M. (Ed.). (2014) CRC Handbook of Chemistry and Physics., CRC Press: Boca Raton, FL.
  • (a) Marsh, H. and Reinoso, F. R. (2006) Activated Carbon., Elsevier: Amsterdam, p. 223. (b) Bansal, R. C., and Goyal, M. (2005) Activated Carbon Adsorption., CRC Press: Boca Raton, FL, p. 43–44.
  • (a) Harding, A. W., Foley, N. J., Norman, P. R., Francis, D. C., and Thomas, K. M. (1998) Diffusion barriers in the kinetics of water vapor adsorption/desorption on activated carbons. Langmuir, 14: 3858–3864. (b) Carrasco-Marin, F., Mueden, A., Centeno, T. A., Stoeckli, F., and Moreno-Castilla, C. (1997) Water adsorption on activated carbons with different degrees of oxidation. J. Chem. Soc. Faraday Transact., 93: 2211–2215.
  • (a) Somorjai, G. A. (1994) Introduction to Surface Chemistry and Catalysis, Wiley- Interscience: New York, p. 308. (b) Gregg, S. J. (1965) The Surface Chemistry of Solids., Chapman & Hall: London, p. 126.
  • Desiraju, G. R. and Steiner, T. (2001) The Weak Hydrogen Bond in Structural Chemistry and Biology, Oxford University Press: New York, p. 13.
  • (a) Charlier, A., Taglang, P., Donnet, J. B., Lahaye, J., Metzger, J., and Papirer, E. (1965) Etude de noirs de carbone par resonance paramagnetique electronique. Carbon, 3: 231–240. (b) Arnold, G. M. (1967) A survey of ESR in heat treated carbon blacks. Carbon 5: 33–42. (c) Arnold, G. and Mrozowski, S. (1968) Electron spin resonance in turbocrystalline carbons—I. Carbon, 6: 243–256. (d) Mrozowski, S. (1968) Electron spin resonance in turbocrystalline carbons—II. Carbon, 6: 841–856. (e) Delhaes, P. and Carmona, F. (1972) Etude par resonance paramagnetique electronique, entre 4, 2 et 300 K d'une famille de noirs de carbone. Carbon, 10: 677–690. (f) Donnet, J. B., Rigaut, M., and Furstenberger, R. (1973) Etude par resonance paramagnetique electronique de noirs de carbone traites par l'azodiisobutyronitrile en absence d'oxygene. Carbon, 11: 153–162. (g) Mrozowski, S. (1979) ESR of carbons in the transition range - I. Carbon, 17: 227–236. (h) Mrozowski, S. (1982) ESR of carbons in the transition range—II. Carbon, 20(4), 303–317.
  • Peña, J. M., Allen, N. S., Edge, M., Liauw, C. M., Hoon, S. R., Valange, B., and Cherry, R. I. (2000) Analysis of radical content on carbon black pigments by electron spin resonance: influence of functionality, thermal treatment and adsorption of acidic and basic probes. Polym. Degrad. Stabil., 71: 153–170.
  • Razumovskii, S. D., Gorshenev, V. N., Kovarskii, A. L., Kuznetsov, A. M., and Shchegolikhin, A. N. (2007) Carbon nanostructure reactivity: reactions of graphite powders with ozone. Fullerenes Nanot. Carbon Nanostruct., 15: 53–63.
  • (a) Bourlinos, A. B., Giannelis, E. P., Sanakis, Y., Bakandritsos, A., Karakassides, M., Gjoka, M., and Petridis, D. (2006) A graphite oxide-like carbogenic material derived from a molecular precursor. Carbon, 44: 1906–1912. (b) Bourlinos, A. B., Steriotis, T. A., Karakassides, M., Sanakis, Y., Tzitzios, V., Trapalis, C., Kouvelos, E., and Stubos, A. (2007) Synthesis, characterization and gas sorption properties of a molecularly-derived graphite oxide-like foam. Carbon, 45: 852–857.
  • (a) Cataldo, F., Putz, M. V., Ursini, O., Angelini, G, Garcia-Hernandez, A. D., and Manchado, A. (2016) A new route to graphene starting from heavily ozonized fullerenes. Part 3. An electron spin resonance study. Fullerenes Nanot. Carbon Nanostruct., published online DOI: 10.1080/1536383X.2015.1113524. (b) Cataldo, F., Putz, M. V., Ursini, O., Angelini, G, Garcia-Hernandez, A. D., and Manchado, A. (2016) A new route to graphene starting from heavily ozonized fullerenes: Part 2—Oxidation in air. Fullerenes Nanot. Carbon Nanostruct., 24: 62–66. (c) Cataldo, F., Putz, M. V., Ursini, O., Angelini, G, Garcia- Hernandez, A. D., and Manchado, A. (2016) A new route to graphene starting from heavily ozonized fullerenes: Part 1—Thermal reduction under inert atmosphere. Fullerenes Nanot. Carbon Nanostruct., 24: 52–61.
  • (a) Kempiński, M., Kempiński, W., and Śliwińska–Bartkowiak, M. (2006) Influence of guest molecules adsorption on electronic properties of activated carbon fibers. Rev. Adv. Mater. Sci, 12: 72–77. (b) Kempiński, M., Kempiński, W., Kaszyński, J., and Śliwińska-Bartkowiak, M. (2006) Model of spin localization in activated carbon fibers. Appl. Phys. Lett., 88: 143103. (c) Łoś, S., Duclaux, L., and Kempiński, W. (2010) Different types of paramagntic complexes and size manifestation in EPR measurements of small carbon particles. Current Top. Biophys., 33: 147–152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.