139
Views
6
CrossRef citations to date
0
Altmetric
ARTICLES

Study on novel poly (vinyl pyrrolidone) doped MWCNTs/polyrhodanine nanocomposites: Synthesis, characterization, and thermal performance

, &
Pages 604-609 | Received 24 May 2016, Accepted 09 Jul 2016, Published online: 22 Jul 2016

References

  • Mittal, G., Dhand, V., Rheea, K. Y., Park, S. J., and Leec, W. R. (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem., 21: 11–25.
  • Xie, X. L., Mai, Y. W., and Zhou, X. P. (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mater. Sci. Eng. R, 49: 89–112.
  • Ma, P. C., Siddiqui, N. A., Marom, G., and Kim, J. K. (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A—Appl. S, 41: 1345–1367.
  • Thostenson, E. T., Ren, Z., and Chou, T. W. (2001) Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol., 61: 1899–1912.
  • Cadek, M., Coleman, J. N., Ryan, K. P., Nicolosi, V., Bister, G., Fonseca, A., Nagy, J. B., Szostak, K., Béguin, F., and Blau, W. J. (2004) Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area. Nano Lett., 4: 353–356.
  • Pradhan, A. K., and Swain, S. K. (2013) Synthesis and characterization of poly (acrylonitrile-co-methylmethacrylate) nanocomposites reinforced by functionalized multiwalled carbon nanotubes. Iran Polym. J., 22: 369–376.
  • Lu, Ch, and Chiu, H. (2008) Chemical modification of multiwalled carbon nanotubes for sorption of Zn2+ from aqueous solution. Chem. Eng. J., 139: 462–468.
  • Chena, S. J., Zou, B., Collins, F., Zhaoa, X. L., Majumber, M., and Duan, W. H. (2014) Predicting the influence of ultrasonication energy on the reinforcing efficiency of carbon nanotubes. Carbon, 77: 1–10.
  • Park, C., Ounaies, Z., Watson, K. A., Crooks, R. E., Smith, J., Lowther, S. E., Connell, J. W., Siochi, E. J., Harrison, J. H., and Clair, T. (2002) Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett., 3–4: 303–308.
  • Bai, Y., Park, I. S., Lee, S. J., Bae, T. S., Watari, F., Uo, M., and Lee, M. H. (2011) Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent. Carbon, 49: 3663–3671.
  • Kim, S. W., Kim, T., Kim, Y. S., Choi, H. S., Lim, H. J., Yang, S. J., and Park, C. R. (2012) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon, 50: 3–33.
  • Hwang, G. L., Shieh, Y. T., and Hwang, K. C. (2004) Efficient load transfer to polymer-grafted multiwalled carbon nanotubes in polymer composites. Adv. Funct. Mater., 14: 487–491.
  • Vaisman, L., Wagner, D., and Marom, G. (2006) the role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interf., 128–130: 37–46.
  • Geng, Y., Liu, M. Y., Li, J., Shi, X. M., and Kim, J. K. (2008) Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos. Part A—Appl. S, 39: 1876–1883.
  • Ghorabi, S., Rajabi, L., Madaeni, S. S., Zinadini, S., and Derakhshan, A. A. (2012) Effects of three surfactant types of anionic, cationic and non-ionic on tensile properties and fracture surface morphology of epoxy/MWCNT nanocomposites. Iran Polym. J., 21: 121–130.
  • Inama, F., Heaton, A., Brown, P., Peijs, T., and Reece, M. (2014) Effects of dispersion surfactants on the properties of ceramic–carbon nanotube (CNT) nanocomposites. Ceram. Int., 40: 511–516.
  • Kardas, G., and Solmaz, R. (2007) electrochemical synthesis and characterization of a new conducting polymer: Polyrhodanine. Appl. Surf. Sci., 253: 3402–3407.
  • Kong, H., Song, J., and Jang, J. (2009) One-step preparation of antimicrobial polyrhodanine nanotubes with silver nanoparticles. Macromol. Rapid Commun., 30: 1350–1355.
  • Song, J., Song, H., Kong, H., Hong, J. Y., and Jang, J. (2011) Fabrication of silica/polyrhodanine core/shell nano particles and their antibacterial properties. J. Mater. Chem., 21: 19317–19323.
  • Altunbas, E., Solmaz, R., and Kardas, G. (2010) Corrosion behaviour of polyrhodanine coated copper electrode in 0.1 M H2SO4 solution. Mater. Chem. Phys., 121: 354–358.
  • Lee, C. H., Chiang, C. L., and Liu, S. J. (2013) Electrospun nanofibrous rhodanine/polymethylmethacrylate membranes for the removal of heavy metal ions. Sep. Purif. Technol., 118: 737–743.
  • Song, J., Oh, H., Kong, H., and Jang, J. (2011) Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal. J. Hazard Mater., 187: 311–317.
  • Alizadeh, B., Ghorbani, M., and Salehi, M. A. (2016) Application of polyrhodanine modified multi-walled carbon nanotubes for high efficiency removal of Pb (II) from aqueous solution. J. Mol. Liq., 220: 142–149.
  • Alizadeh, B., Ghorbani, M., and Salehi, M. A. (2015) Preparation of CNTs / Polyrhodanine nanocomposites through one - step chemical oxidation polymerization. The 15th Iranian National Congress of Chemical Engineering, University of Tehran, Tehran, Iran.
  • Song, J., Kong, H., and Jang, J. (2011) Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles. J. Colloid Interf. Sci., 359: 505–511.
  • Han, Z., and Fina, A. (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym Sci., 36: 914–944.
  • Wang, J., Xie, H., and Xin, Z. (2011) Preparation and Thermal Properties of Grafted CNTs Composites. J. Mater. Sci. Technol., 27: 233–238.
  • Hesami, M., Bagheri, R., and Masoomi, M. (2014) Combination effects of carbon nanotubes, MMT and phosphorus flame retardant on fire and thermal resistance of fiber-reinforced epoxy composites. Iran Polym. J., 23: 469–476.
  • Lipecka, J., Andrzejczuk, M., Lewandowska, M., Rusch, J., and Kurzydłowski, K. (2011) Evaluation of thermal stability of ultrafine grained aluminium matrix composites reinforced with carbon nanotubes. Compos Sci. Technol., 71: 1881–1885.
  • Pöllänen, M., Pirinen, S., Suvanto, M., and Pakkanen, T. T. (2011) Influence of carbon nanotube polymeric compatibilizer masterbatches on morphological, thermal, mechanical, and tribological properties of polyethylene. Compos. Sci. Technol., 71: 1353–1360.
  • Rahmanzadeh, L., Ghorbani, M., and Jahanshahi, M. (2014) Synthesis and Characterization of Fe3O4 @ polyrhodanine nanocomposite with core-shell morphology. Adv. Polym. Tech., doi: 10.1002/adv.21463
  • Kaleemullah, M., Khan, S. U., and Kim, J. K. (2012) Effect of surfactant treatment on thermal stability and mechanical properties of CNT/polybenzoxazine nanocomposites. Compos. Sci. Technol., 72: 1968–1976.
  • Zakaria, M. R., Akil, H. M., Kudus, M. H. A., and Saleh, S. S. M. (2014) Enhancement of tensile and thermal properties of epoxy nanocomposites through chemical hybridization of carbon nanotubes and alumina. Compos. Part A—Appl. S, 66: 109–116.
  • Zubir, M. N. M., Badarudin, A., Kazi, S. N., Huang, N. M., Misran, M., Sadeghinezhad, E., Mehrali, M., and Yusoff, N. (2015) Highly dispersed reduced graphene oxide and its hybrid complexes as effective additives for improving thermophysical property of heat transfer fluid. Int. J. Heat Mass Transf., 87: 284–294.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.