226
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Acenes adducts with C70 fullerene: Anthracene, tetracene and pentacene

, &
Pages 679-687 | Received 04 Jul 2016, Accepted 21 Jul 2016, Published online: 03 Aug 2016

References

  • (a) Cami, J., Bernard-Salas, J., Peeters, E., and Malek, S. E. (2010) Detection of C60 and C70 in a young planetary nebula. Science, 329: 1180–1183. (b) Garcia-Hernandez, D. A., Manchado, A., Garcia-Lario P., Stanghellini, L., Villaver, E., Shaw, R. A., Szczerba, R., and Perea-Calderon, J. V. (2010) Formation of fullerenes in H-containing planetary nebulae Astrophys. J., 724: L39–L43. (c)García-Hernandez, D. A., Iglesias-Groth, S., Acosta- Pulido, J. A., Manchado, A., García-Lario, P., Stanghellini, L., Villaver, E., Shaw, R. A., and Cataldo, F. (2011) The formation of fullerenes: Clues from new C60, C70, and (possible) planar C24 detections in Magellanic cloud planetary nebulae. Astrophys. J. Lett., 737: L30–L37. (d)Garcia- Hernandez, D. A., Rao, N. K., and Lambert, D. L. (2011) Are C60 molecules detectable in circumstellar shells of R Coronae Borealis stars? Astrophys. J., 729: 126–132.
  • (a) Kroto, H. W., and Jura, M. (1992) Circumstellar and interstellar fullerenes and their analogues. Astron. Astrophys., 263: 275–280. (b) Bohme, D. K. (1992) PAH (polycyclic aromatic hydrocarbons) and fullerene ions and ion/molecule reactions in interstellar and circumstellar chemistry. Chem. Rev., 92: 1487–1508.
  • Campbell, E. K., Holz, M., Maier, J. P., Gerlich, D., Walker, G. A. H., and Bohlender, D. (2016) Gas phase absorption spectroscopy of C60+ and C70+ in a cryogenic ion trap: comparison with astronomical measurements. Astrophys. J., 822: 17.
  • (a) Omont, A. (2016) Interstellar fullerene compounds and diffuse interstellar bands. Astronom. Astrophys., 590: A52 ( 27 pp). (b) Dunk, P. W., Adjizian, J. J., Kaiser, N. K., Quinn, J. P., Blakney, G. T., Ewels, C. P., Marshal, A. G., and Kroto, H. W. (2013) Metallofullerene and fullerene formation from condensing carbon gas under conditions of stellar outflows and implication to stardust. Proc. Nat. Acad. Sci., 110: 18081–18086. (c) Cataldo, F., Garcia-Hernandez, D. A., Manchado, A., and Kwok, S. (2016) Laboratory study of carbonaceous dust and molecules of astrochemical interest. J. Phys. Conf. Ser. in press. (d) Cataldo, F., García-Hernández, D. A., and Manchado, A. (2012) A review on carbon-rich molecules in space. Proceed. Internat. Astronom. Union, 10: 720–722.
  • (a) Cataldo, F. (2003) Fullerane, the hydrogenated C60 fullerene: Properties and astrochemical considerations. Fullerenes Nanot. Carbon Nanostruct., 11: 295–316. (b) Cataldo, F. and Iglesias-Groth, S. (2009) On the action of UV photons on hydrogenated fulleranes C60H36 and C60D36. Monthly Notices Royal Astronom. Soc., 400: 291–298. (c) Cataldo, F., Iglesias-Groth, S., and Manchado, A. (2009) Synthesis and FT-IR spectroscopy of perdeuterofullerane: C60D36 evidences of isotope effect in the stability of C60D36. Fullerenes Nanot. Carbon Nanostruct., 17: 378–389. (d) Cataldo, F., Iglesias-Groth, S., and Manchado, A. (2009) Perdeuterofulleranes: Synthesis and properties of C70D38 and C70H38. Fullerenes Nanot. Carbon Nanostruct., 17: 401–413. (e) Cataldo, F., Iglesias-Groth, S., and Manchado, A. (2009) Kinetic Isotope Effects on the Photolysis of C60H18 and C60D18. Fullerenes Nanot. Carbon Nanostruct., 17: 414–427. (f) Cataldo, F., Iglesias-Groth, S., and Manchado, A. (2009) Photolytic Decomposition of hydrogenated C70: C70H38 and C70D38. Fullerenes Nanot. Carbon Nanostruct., 17: 428–439. (g) Luzan, S. M., Cataldo, F., Tsybin, Y. O., and Talyzin, A. V. (2009) Thermal decomposition of C60H18. J. Phys. Chem. C, 113: 13133–13138. (h) Cataldo, F. and Iglesias-Groth, S. (Eds.). (2010) Fulleranes: The Hydrogenated Fullerenes. Springer Science & Business Media: Berlin.
  • (a) García-Hernández, D. A., Cataldo, F., and Manchado, A. (2013) Infrared spectroscopy of fullerene C60/anthracene adducts. Monthly Not. Royal Astron. Soc., 434: 415–422. (b) Cataldo, F., García-Hernández, D. A., and Manchado, A. (2014) Sonochemical synthesis of fullerene C60/anthracene diels-alder mono and bis-adducts. Fullerenes Nanot. Carbon Nanostruct., 22: 565–574. (c) Cataldo, F., Garcia-Hernandez, D. A., and Manchado, A. (2014) A study on the synthesis and stability of the C60 fullerene/tetracene adduct. Eur. Chem. Bull., 3: 740–744. (d) Cataldo, F., García-Hernández, D. A., and Manchado, A. (2015) On the C60 Fullerene adduct with pentacene: Synthesis and stability. Fullerenes Nanot. Carbon Nanostruct., 23: 818–823. (e) Cataldo, F., Garcıa-Hernandez, D. A., and Manchado, A. (2015) Chemical thermodynamics applied to the Diels–Alder reaction of C60 fullerene with polyacenes. Fullerenes Nanot. Carbon Nanostruct., 23: 760–768.
  • Garcia-Hernandez, D. A., Cataldo, F., and Manchado, A. (2016) About the iron carbonyl complex with C60 and C70 fullerene: [Fe(CO)4(η2C60)] and [Fe(CO)4(η2C70)]. Fullerenes Nanot. Carbon Nanostruct., 24: 225–233.
  • (a) Díaz-Luis, J. J., García-Hernández, D. A., Manchado, A., and Cataldo, F. (2016) A search for hydrogenated fullerenes in fullerene-containing planetary nebulae. Astron. Astrophys., 589: A5( 7 pages)(Ce: Plz check this ref.). (b) Díaz-Luis, J. J., García-Hernández, D. A., Rao, N. K., Manchado, A., and Cataldo, F. (2015) A search for diffuse bands in fullerene planetary nebulae: Evidence of diffuse circumstellar bands. Astron. Astrophys., 573: A97 ( 14 pages).
  • (a) Gorodetsky, A. A., Cox, M., Tremblay, N. J., Kymissis, I., and Nuckolls, C. (2009) Solar cells from a solution processable pentacene with improved air stability. Chem. Mater., 21: 4090–4092. (b) Linares, M., Beljonne, D., Cornil, J., Lancaster, K., Brédas, J. L., Verlaak, S., and Idé, J. (2010) On the interface dipole at the pentacene−fullerene heterojunction: a theoretical study. J. Phys. Chem. C, 114: 3215–3224. (c) Credgington, D., Kim, Y., Labram, J., Anthopoulos, T. D., and Durrant, J. R. (2011) Analysis of recombination losses in a pentacene/C60 organic bilayer solar cell. J. Phys. Chem. Lett., 2: 2759–2763. (d) Tunc, A. V., De Sio, A., Riedel, D., Deschler, F., Da Como, E., Parisi, J., and Von Hauff, E. (2012) Molecular doping of low-bandgap-polymer: Fullerene solar cells: Effects on transport and solar cells. Org. Electron., 13: 290–296. (e) Lin, Y., Li, Y., and Zhan, X. (2012) Small molecule semiconductors for high-efficiency organic photovoltaics. Chem. Soc. Rev., 41: 4245–4272. (f) Xiao, Z., Geng, X., He, D., Jia, X., and Ding, L. (2016) Development of isomer-free fullerene bisadducts for efficient polymer solar cells. Energy Environ. Sci., 9: 2114–2121.
  • Sabirov, D. S., Terentyev, A. O., and Cataldo, F. (2016) Bisadducts of the C60 and C70 fullerenes with anthracene: Isomerism and DFT estimation of stability and polarizability. Comput. Theor. Chem., 1081: 44–48.
  • (a) Taylor, R. (1999) Lecture Notes on Fullerene Chemistry: A Handbook for Chemists. World Scientific, Imperial College Press: London. (b) Hirsch, A. and Brettreich, M. (2006) Fullerenes: Chemistry and Reactions. Wiley-VCH: Weinheim.
  • (a) Miller, G. P. and Mack, J. (2000) Completely regioselective, highly stereoselective syntheses of cis-bisfullerene [60] adducts of 6, 13-disubstituted pentacenes. Org. Lett., 2: 3979–3982. (b) Miller, G. P., Briggs, J., Mack, J., Lord, P. A., Olmstead, M. M., and Balch, A. L. (2003) Fullerene-acene chemistry: Single-crystal X-ray structures for a [60] fullerene-pentacene monoadduct and a cis-bis [60] fullerene adduct of 6, 13-diphenylpentacene. Org. Lett., 5: 4199–4202. (c) Miller, G. P. and Briggs, J. (2003) Fullerene-Acene Chemistry: Diastereoselective Synthesis of a cis, cis-Tris [60] fullerene Adduct of 6, 8, 15, 17- Tetraphenylheptacene. Org. Lett., 5: 4203–4206. (d) Miller, G. P. and Briggs, J. (2004) Probing the spatial requirements for [60] fullerene–[60] fullerene π-stacking and the syn addition of [60] fullerenes across acenes. Tetrahedron Lett., 45: 477–481.(e) Briggs, J. B. and Miller, G. P. (2006) [60] Fullerene–acene chemistry: A review. Comp. Rend. Chim., 9: 916–927. (f) Athans, A. J., Briggs, J. B., Jia, W., and Miller, G. P. (2007) Hydrogen-protected acenes. J. Mater. Chem., 17: 2636–2641. (g) Kaur, I. and Miller, G. P. (2008) [60] Fullerene cycloaddition across hindered acenes. New J. Chem., 32: 459–463.
  • (a) Kräutler, B., Müller, T., and Duarte-Ruiz, A. (2001) Efficient preparation of monoadducts of [60] fullerene and anthracenes by solution chemistry and their thermolytic decomposition in the solid state. Chem. Eur., J. 7: 3223–3235. (b) Taillemite, S. and Fichou, D. (2004) Synthesis of the first tetracene-[60] fullerene dyad. Eur. J. Org. Chem. 2004: 4981–4984. (c) Sarova, G. H. and Berberan-Santos, M. N. (2004) Kinetics of the Diels–Alder reaction between C60 and acenes. Chem. Phys. Lett., 397: 402–407. (d) Fabre, B., Bassani, D. M., Liang, C. K., Ray, D., Hui, F., and Hapiot, P. (2011) Anthracene and anthracene: C60 adduct-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. J. Phys. Chem. C, 115: 14786–14796. (e) Cao, Y., Liang, Y., Zhang, L., Osuna, S., Hoyt, A. L. M., Briseno, A. L., and Houk, K. N. (2014) Why bistetracenes are much less reactive than pentacenes in diels–alder reactions with fullerenes. J. Am. Chem. Soc., 136: 10743–10751. (f) Su, W. T., Watanabe, M., Chang, Y. J., Chou, P. T., Ghosh, A., and Chow, T. J. (2015) Cycloaddition of hexacene and fullerene [60].Tetrahedron Lett., 56(9): 1092–1095.
  • (a) Klemt, R., Roduner, E., and Fischer, H. (1996) EPR-active intermediates during photochemical reactions of fullerenes with anthracenes. Acta Chem. Scand., 50: 1050–1059. (b) Neti, V. S. P. K., Cerón, M. R., Duarte-Ruiz, A., Olmstead, M. M., Balch, A. L., and Echegoyen, L. (2014) High-yield, regiospecific bis-functionalization of C70 using a Diels– Alder reaction in molten anthracene. Chem. Commun., 50(73): 10584–10587. (c) Shirai, H., Tajima, T., Kubo, K., Nishihama, T., Miyake, H., and Takaguchi, Y. (2016) Synthesis and crystal structure of a [70]fullerene–pentacene monoadduct. Bull. Chem. Soc. Japan, 89: 437–443.
  • Friedel, R. A. and Orchin, M. (1951) Ultraviolet Spectra of Aromatic Compounds. Chapman & Hall Ltd: London, p. 388, 532, 565.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.