64
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Carbon-based specific adjacency-in-bonding (SAIB) isomerism driving aromaticity

&
Pages 733-748 | Received 30 Jul 2016, Accepted 30 Jul 2016, Published online: 28 Nov 2016

References

  • Julg, A., and Françoise, P. (1967) Recherches sur la géométrie de quelques hydrocarbures non-alternants: son influence sur les énergies de transition, une nouvelle définition de l'aromaticité. Theor. Chem. Acta., 8(3): 249–259
  • Kruszewski, J., and Krygowski, T. M. (1972) Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett., 13: 3839–3842
  • Krygowski, T. M. (1993) Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of pi-electron systems. J. Chem. Inf. Comput. Sci., 33(1): 70–78
  • Tarko, L. (2008) Aromatic molecular zones and fragments. Arkivoc, XI: 24–45
  • Balaban, A. T., Biermann, D., and Schmidt, W. (1985) Dualist graph approach for correlating Diese-Adler reactivities of polycyclic aromatic hydrocarbons. Nuov. J. Chim., 9: 443–449
  • Balaban, A. T., Schleyer, P. V. R., and Rzepa, H. S. (2005) Crocker, not Armit and Robinson, begat the six aromatic electrons. Chem. Rev., 105(10): 3436–3447
  • Ciesielski, A., Krygowski, T. M., Cyranski, M. K., Dobrowolski, M. A., and Balaban, A. T. (2009) Are thermodynamic and kinetic stabilities correlated? A topological index of reactivity toward electrophiles used as a criterion of aromaticity. J. Chem. Inf. Model., 49: 369–376
  • Putz, M. V. (2010) Compactness aromaticity of atoms in molecules. Int. J. Mol. Sci., 11: 1269–1310
  • Putz, M. V. (2010) On absolute aromaticity within electronegativity and chemical hardness reactivity pictures. Match, 64: 391–418
  • Gutman, I., Gojak, S., Furtula, B., Radenkovic, S., and Vodopivec, A. (2006) Relating total π-electron energy and resonance energy of benzenoid molecules with kekule´–and clar-structure-based parameters. Monatshefte fur Chemie, 137: 1127–1138
  • Clar, E. (1972) The Aromatic Sextet. London: Wiley.
  • Gutman, I., and Cyvin, S. J. (1989) Introduction to the Theory of Benzenoid Hydrocarbons. Berlin, Heidelberg, New York, Tokyo: Springer.
  • Gutman, I., and Cyvin, S. J. (Eds) (1990) Advances in the Theory of Benzenoid Hydrocarbons; in: Topics in Current Chemistry, Berlin, Heidelberg, New York, Tokyo: Springer, 153.
  • Gutman, I. (Ed) (1992) Advances in the Theory of Benzenoid Hydrocarbons II; in: Topics in Current Chemistry, Berlin, Heidelberg, New York, Tokyo: Springer, 162.
  • Randic, M. (2003) Aromaticity of polycyclic conjugated hydrocarbon. Chem Rev., 103: 3449–3606
  • Zhang, H., and Zhang, F. (1997) The Clar covering polynomial of hexagonal systems I. Discrete Appl Math, 69: 147–167
  • Zhang, H. (1997) The Clar covering polynomial of hexagonal systems with an application to chromatic polynomials. Discrete Math, 172: 163–173
  • Balaban, A. T. (2004) Clar formulas: how to draw and how not to draw formulas of polycyclic aromatic hydrocarbons. Polycycl. Aromat. Comp., 24: 83–89
  • Randic, M., and Plavsic, D. (2011) Algebraic Clar formulas–numerical representation of Clar structural formula. Acta Chim. Slov., 58: 448–457
  • Cyvin, S. J., and Gutman, I. (1986) Number of Kekule structures as a function of the number of hexagons in benzenoid hydrocarbons. Z. Naturforsch, 41a: 1079–1086
  • Gutman, I. (1982) On Kekul'e structure count of cata-condensed benzenoid hydrocarbons. Match Mülheim, 13: 173–181.
  • Gutman, I. (1983) Topological properties of benzenoid systems XXI. Theorems, conjectures, unsolved problems. Croat Chem. Acta, 56: 365–374
  • Cyvin, S. J., and Gutman, I. (1985) Topological properties of benzenoid systems–XXXIX–The number of Kekule structures of benzenoid hydrocarbons containing a chain of hexagons. J. Serb. Chem. Soc., 50: 443–450.
  • Balaban, A. T., and Hararay, F. (1968) Chemical graphs–V: Enumeration and proposed nomenclature of benzenoid cata-condensed polycyclic aromatic hydrocarbons. Tetrahedron, 24: 2505–2516.
  • Ciesielski, A., Krygowski, T. M., and Cyrański, M. K. (2010) How to find the Fries structures for benzenoid hydrocarbons. Symmetry, 2: 1390–1400.
  • Minkin, V. I., Glukhovtsev, M. N., and Simkin, B. Y. (1994) Aromaticity and Antiaromaticity, New York, NY, USA: J. Wiley.
  • Pascal Jr, R. A. (2006) Twisted acenes. Chem. Rev., 106: 4809–4819
  • Schleyer, P. V. R. (2001) Special issue of the journal devoted to aromaticity. Chem. Rev., 101: 1115–1566.
  • Schleyer, P. V. R. (2005) Special issue of the journal devoted to delocalization sigma and pi. Chem. Rev., 105: 3433–3948.
  • Randić, M. (2003) Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev., 103: 3449–3605.
  • Randic, M. (2014) Novel insight into Clar's aromatic π-sextets. Chem. Phys. Lett. 601: 1–5.
  • Clar, E. (1972) The Aromatic Sextet, London: John Wiley & Sons.
  • Fries, K. (1927) Über bicyclische Verbindungen und ihren Vergleich mit dem Naphtalin. Justus Liebigs Ann. Chem., 454: 121–324
  • Horn, R. A., and Johnson, C. R. (1985) Matrix Analysis, Cambridge, UK: Cambridge University Press.
  • Horn, R. A., and Johnson, C. R. (1994) Topics in Matrix Analysis, Cambridge, UK: Cambridge University Press.
  • Gutman, I. (1978) A method for calculation of resonance energy of benzenoid hydrocarbons. Z. Naturforsch., 33a: 840–841
  • Aihara, J. (1977) Aromatic sextets and aromaticity in benzenoid hydrocarbons. Bull. Chem. Soc. Japan, 50(8): 2010–2012
  • Hosoya, H., and Yamaguchi, T. (1975) Sextet polynomial. A new enumeration and proof technique for the resonance theory applied to the aromatic hydrocarbons. Tetrahedron Lett., 16(52): 4659–4666
  • Gutman, I., and Trinajstic, N. (1976) Graph theory and molecular orbitals. XV. The Huckel rule. J. Chem. Phys., 64: 49210–4925.
  • Tudoran, M. A., and Putz, M. V. (2015) Molecular graph theory: from adjacency information to colored topology by chemical reactivity. Curr. Org. Chem., 19: 359–386.
  • Putz, M. V., Tudoran, M. A., and Putz, A. M. (2013) Structure properties and chemical-bio/ecological of PAH interactions: from synthesis to cosmic spectral lines, nanochemistry, and lipophilicity-driven reactivity. Curr. Org. Chem., 17: 2845–2828.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.