184
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Excellent visible light photocatalytic properties of novel graphene based CdLa2S4/TiO2 heterojunction nanocomposite

&
Pages 1-11 | Received 18 Aug 2016, Accepted 12 Sep 2016, Published online: 30 Sep 2016

References

  • Hashimoto, K., Irie, H., and Fujishima, A. (2005) TiO2photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys., 44: 8269–8285.
  • Anpo, M., and Takeuchi, M. (2003) The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. J. Catal., 216: 505–516.
  • Irie, H., Watanabe, Y., and Hashimoto, K. (2003) Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J. Phys. Chem., B 107: 5483–5486.
  • Kisch, H., Zang, L., Lange, C., Maier, W. F., Antonis, C., and Meissner, D. Angew. (1998) Modified Amorphous Titania—A Hybrid Semiconductor for Detoxification and Current Generation by Visible Light. Chem. Int. Ed., 37: 3034–3036.
  • Robert, D. (2007) Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications. Catal. Today., 122: 20–26.
  • Kim, J. C., Choi, J., Lee, Y. B., Hong, J. H., Lee, J. I., Yang, J. W., Lee, W. I., and Hur, N. H. (2006) Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles. Chem. Commun., 48: 5024–5026.
  • Bessekhouad, Y., Robert, D., and Weber, J.V. (2004) Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J. Photochem. Photobiol., A, 163: 569–580.
  • Stengl, V., Bakardjieva, S., Murafa, N., Houˇ sková, V., and Lang, K. (2008) Visible-light photocatalytic activity of TiO2/ZnS nanocomposites prepared by homogeneous hydrolysis. Micropor.Mesopor.Mater., 110: 370–378.
  • Kale, B.B., Baeg, J.O., Kong, K.J., Moon, S.J., Nikam, L.K., and Patil, K. R. (2011) Self assembled CdLa2S4 hexagon flowers, nanoprisms and nanowires: Novel photocatalysts for solar hydrogen production. J. Mater. Chem., 21: 2624–2631.
  • Yuan, Y.P., Cao, S.W., Yin, L.S., Xu, L., and Xue, C. (2013) NiS2 Co-catalyst decoration on CdLa2S4 nanocrystals for efficient photocatalytic hydrogen generation under visible light irradiation. Int. J. Hydrogen. Energy., 38: 7218–7223.
  • Zhang, N., Yang, M.Q., Liu, S., Sun, Y., and Xu, Y.J. (2015) Waltzing with the versatile platform of graphene to synthesize composite photocatalysts. Chem. Rev., 115: 10307–10377.
  • Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., and Ruoff, R. S. (2010) Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater., 22: 3906–3924.
  • Kamat, P. V. (2010) Graphene based nanoarchitectures. anchoring semiconductor and metal nanoparticles on a 2-dimensional carbon support. J. Phys. Chem. Lett., 1: 520–527.
  • Yang, M.Q., Zhang, N., Pagliaro, M., and Xu, Y.J. (2014) Artificial photosynthesis over graphene–semiconductor composites. Are we getting better? Chem. Soc. Rev., 43: 8240–8254.
  • Kim, S. R., Parvez, M. K., and Chhowalla, M. (2009) UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells. Chem. Phys. Lett., 483: 124–127.
  • Scheuermann, G. M., Rumi, L., Steurer, P., Bannwarth, W., and Mulhaupt, R. (2009) Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki−Miyaura coupling reaction. JACS., 131: 8262–8270.
  • Pasricha, R., Gupta, S., and Srivastava, A. K. (2009) A facile and novel synthesis of Ag-Graphene-based nanocomposites. Small, 5: 2253–2259.
  • Muszynski, R., Seger, B., and Kamat, P.V. (2008) Decorating graphene sheets with gold nanoparticles. J. Phys. Chem., C, 112: 5263–5266.
  • Zhang, Y., Tang, Z.R., Fu, X., and Xu, Y.J. (2010) TiO2−graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2−graphene truly different from other TiO2−Carbon composite materials? ACS Nano., 4: 7303–7311.
  • Lin, Y., Zhang, K., Chen, W., Liu, Y., Geng, Z., Zeng, J., Pan, N., Yan, L., Wang, X., and Hou, J. G. (2010) Dramatically enhanced photoresponse of reduced graphene oxide with Linker-Free anchored CdSe nanoparticles. ACS Nano., 4: 3033–3038.
  • Oh, W. C., Chen, M. L., Zhang, K., Zhang, F. J., and Jang, W. K. (2010) The effect of thermal and ultrasonic treatment on the formation of graphene-oxide nanosheets. J. Korean Phys. Soc., 56: 328–332.
  • Zhu, L., Meng, Z. D., Ghosh, T., and Oh, W.C. (2012) Hydrothermal synthesis of porous Ag2S sensitized TiO2 catalysts and their photocatalytic activities in the visible light range. Chin. J. Catal., 33: 254–260.
  • Hou, J. G., Yang, C., Wang, Z., Jiao, S.Q., and Zhu, H.M. (2012) Hydrothermal synthesis of CdS/CdLa2S4 heterostructures for efficient visible-light-driven photocatalytic hydrogen production. RSC Adv., 2: 10330–10336.
  • Cai, D., and Song, M. (2007) Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. J. Mater. Chem., 17: 3678–3680.
  • Perera, S.D., Mariano, R.G., Vu, K., Nour, N., Seitz, O., Chabal, Y., and Balkus, K.J. (2012) Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal., 2: 949–956.
  • Zhang, N., and Xu, Y.J. (2016) The endeavour to advance graphene–semiconductor composite-based photocatalysis. Cryst.Eng .Comm., 18: 24–37.
  • Zhu, L., Meng, Z.D., Park, C.Y., Ghosh, T., and Oh, W.C. (2012) Characterization and relative sonocatalytic efficiencies of a new MWCNT and CdS modified TiO2 catalysts and their application in the sonocatalytic degradation of rhodamine B, Ultrason. Sonochem., 20: 478–484.
  • Wang, J., Guo, Y., Liu, B., Jin, X., Liu, L., Xu, R., Kong, Y., and Wang, B. (2011) Detection and analysis of reactive oxygen species (ROS) generated by nano-sized TiO2powder under ultrasonic irradiation and application in sonocatalytic degradation of organic dyes, Ultrason. Sonochem., 18: 177–183.
  • Guo, Y. W., Cheng, C. P., Wang, J., Wang, Z. Q., Jin, X. D., Li, K., Kang, P. L., and Gao, J. Q. (2011) Detection of reactive oxygen species (ROS) generated by TiO2(R), TiO2(R/A) and TiO2(A) under ultrasonic and solar light irradiation and application in degradation of organic dyes. J. Hazard. Mater., 192: 786–793.
  • Gao, P., Liu, J., Sun, D.D., and Ng, W. (2013) Graphene oxide–CdS composite with high photocatalytic degradation and disinfection activities under visible light irradiation. J. Hazard. Mater., 250-251C(8): 412–420.
  • Zhang, D. (2013) Synergetic effects of Cu2O photocatalyst with titania and enhanced photoactivity under visible irradiation. Acta.Chim.Slov., 6(1): 141–149.
  • Han, C., Zhang, N., and Xu, Y. J. (2016) Structural diversity of graphene materials and their multifarious roles in heterogeneous photocatalysis. Nano Today., 11: 351–372.
  • Zhang, N., Zhang, Y. H., and Xu, Y. J. (2012) Recent progress on Graphene-based photocatalysts: Current status and future perspectives. Nanoscale., 4: 5792–5813.
  • Cai, D., and Song, M. (2007) Preparation of fully exfoliated graphite oxide nanoplatelets in organic solvents. J. Mater. Chem., 17: 3678–3680.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.