117
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Efficient desulfurization of fuel with functionalized mesoporous carbon CMK-3-O and comparison its performance with mesoporous carbon CMK-3

, , &
Pages 786-795 | Received 04 Aug 2016, Accepted 26 Sep 2016, Published online: 28 Nov 2016

References

  • Hansmeier, A. R., Meindersma, G. W., and de Haan, A. B. (2011) Desulfurization and denitrogenation of gasoline and diesel fuels by means of ionic liquids. Green Chem., 13: 1907–1913.
  • Li, F. T., Liu, Y., Sun, Z. M., Chen, L. J., Zhao, D. S., Liu, R. H., and Kou, C. G. (2010) Deep extractive desulfurization of gasoline with xEt3NHCl·FeCl3 ionic liquids. Energy Fuels, 24: 4285–4289.
  • Wang, Y., Li, H., Zhu, W., Jiang, X., He, L., Lu, J., and Yan, Y. (2010) The extractive desulfurization of fuels using ionic liquids based on FeCl3. Pet. Sci. Technol., 28: 1203–1210.
  • Nie, Y., Li, C. X., Meng, H., and Wang, Z. H. (2008) N,N-dialkylimidazoliumdialkylphosphate ionic liquids: Their extractive performance for thiophene series compounds from fuel oils versus the length of alkyl group. Fuel Process. Technol., 89: 978–983.
  • Gao, H. S., Li, Y. G., Wu, Y., Luo, M. F., Li, Q., Xing, J. M., and Liu, H. (2009) Extractive desulfurization of fuel using 3-methylpyridinium-based ionic liquids. Energy Fuels, 23: 2690–2694.
  • Kulkarni, P. S., and Afonso, C. A. M. (2010) Deep desulfurization of diesel fuel using ionic liquids: current status and future challenges. Green Chem., 12: 1139–1149.
  • Kumar, S., Srivastava, V. C., and Badoni, R. P. (2012) Oxidative desulfurization by chromium promoted sulfated zirconia. Fuel Process. Technol., 93: 18–25.
  • Zhao, D., Wang, Y., Duan, E., and Zhang, J. (2010) Oxidation desulfurization of fuel using pyridinium-based ionic liquids as phase-transfer catalysts. Fuel Process. Technol., 91: 1803–1806.
  • Sachdeva, T. O., and Pant, K. K. (2010) Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst. Fuel Process. Technol., 91: 1133–1138.
  • Jia, Y., Li, G., and Ning, G. (2011) Efficient oxidative desulfurization (ODS) of model fuel with H2O2 catalyzed by MoO3/γ-Al2O3 under mild and solvent free conditions. Fuel Process. Technol., 92: 106–111.
  • Wang, T., Zhao, D. S., Sun, Z. M., Li, F. T., Song, Y. Q., and Kou, C. G. (2012) One-step oxidative desulfurization of dibenzothiophene using cyclohexanone peroxide in n-alkyl-imidazolium–based ionic liquid extraction systems. Pet. Sci. Technol., 30: 385–392.
  • Li, J., Yang, L. N., and Shen, J. (2011) One-step oxidation–desulfurization of FCC gasoline catalyzed by tungstophosphoric acid. Pet. Sci. Technol., 29: 247–253.
  • Rao, T. V., Krishna, P. M., Paul, D., Nautiyal, B. R., Kumar, J., Sharma, Y. K., Nanoti, S. M., Sain, B., and Garg, M. O. (2011) The oxidative desulfurization of HDS diesel: using aldehyde and molecular oxygen in the presence of cobalt catalysts. Pet. Sci. Technol., 29: 626–632.
  • Bhatia, S., and Sharma, D. K. (2006) Emerging role of biorefining of heavier crude oils and integration of biorefining with petroleum refineries in the future. Pet. Sci. Technol., 24: 1125–1159.
  • Alejandro Dinamarca, M., Ibacache-Quiroga, C., Baeza, P., Galvez, S., Villarroel, M., Olivero, P., and Ojeda, J. (2010) Biodesulfurization of gas oil using inorganic supports biomodified with metabolically active cells immobilized by adsorption. Bioresour. Technol., 101: 2375–2378.
  • AzimzadehIrani, Z., Mehrnia, M. R., Yazdian, F., Soheily, M., Mohebali, Gh. A., and Rasekh, B. (2011) Analysis of petroleum biodesulfurization in an airlift bioreactor using response surface methodology. Bioresour. Technol., 102: 10585–10591.
  • Lam, V., Li, G., Song, C., Chen, J., Fairbridge, C., Hui, R., and Zhang, J. (2012) A review of electrochemical desulfurization technologies for fossil fuels. Fuel Process. Technol., 98: 30–38.
  • Wang, W., Wang, Sh., Liu, H., and Wang, Z. (2007) Desulfurization of gasoline by a new method of electrochemical catalytic oxidation. Fuel, 86: 2747–2753.
  • Ke, T., and Xin, H. (2010) Deep desulfurization of model gasoline by adsorption on mesoporous CeMCM-41. Pet. Sci. Technol., 28: 573–581.
  • Muzic, M., Sertic-Bionda, K., and Adzamic, T. (2011) Desulfurization of diesel fuel in a fixed bed adsorption column: experimental study and simulation. Pet. Sci. Technol., 29: 2361–2371.
  • Zhang, J., Liu, Y., Chen, Z., Chai, Y., Yin, H., and Liu, C. (2010) The preparation of Ni/ZnO adsorbent via a low-temperature solid-state method for ultra-deep desulfurization. Pet. Sci. Technol., 28: 1476–1484.
  • Muzic, M., Sertic-Bionda, K., Gomzi, Z., Podolski, S., and Telen, S. (2010) Study of diesel fuel desulfurization by adsorption. Chem. Eng. Res. Des., 88: 487–495.
  • Zhang, K., Liu, Y., Tian, Sh., Zhao, E., Zhang, J., and Liu, Ch. (2013) Preparation of bifunctional NiPb/ZnO-diatomite-ZSM-5 catalyst and its reactive adsorption desulfurization coupling aromatization performance in FCC gasoline upgrading process. Fuel, 104: 201–207.
  • Seredych, M., and Bandosz, T. J. (2011) Investigation of the enhancing effects of sulfur and/or oxygen functional groups of nanoporous carbons on adsorption of dibenzothiophenes. Carbon, 49: 1216–1224.
  • Kumar, S., Srivastava, V. C., and Badoni, R. P. (2011) Studies on adsorptive desulfurization by zirconia based adsorbents. Fuel, 90: 3209–3216.
  • Tian, F., Yang, X., Shi, Y., Jia, C., and Chen, Y. (2012) Adsorptive desulfurization over hierarchical beta zeolite by alkaline treatment. J. Nat. Gas Chem., 21: 647–652.
  • Wang, L., Sun, Z., Ding, Y., Chen, Y., Li, Q., Xu, M., Li, H., and Song, L. (2011) A theoretical study of thiophenic compounds adsorption on cation-exchanged Y zeolites. Appl. Surf. Sci., 257: 7539–7544.
  • Tang, K., Hong, X., Zhao, Y. H., Wang, Y. G. (2011) Adsorption desulfurization on a nanocrystalline NaY zeolite synthesized using carbon nanotube templated growth. Pet. Sci. Technol., 29: 779–787.
  • Wang, H., Song, L., Jiang, H., Xu, J., Jin, L., Zhang, X., and Sun, Z. (2009) Effects of olefin on adsorptive desulfurization of gasoline over Ce(IV)Y zeolites. Fuel Process. Technol., 90: 835–838.
  • Gong, Y., Dou, T., Kang, S., Li, Q., and Hu, Y. (2009) Deep desulfurization of gasoline using ion-exchange zeolites: Cu(I)- and Ag(I)-beta. Fuel Process. Technol., 90: 122–129.
  • Selvavathi, V., Chidambaram, V., Meenakshisundaram, A., Sairam, B., and Sivasanker, B. (2009) Adsorptive desulfurization of diesel on activated carbon and nickel supported systems. Catal. Today, 141: 99–102.
  • NaviriFallah, R., and Azizian, S. (2012) Removal of thiophenic compounds from liquid fuel by different modified activated carbon cloths. Fuel Process. Technol., 93: 45–52.
  • Kumagai, S., Shimizu, Y., Toida, Y., and Enda, Y. (2009) Removal of dibenzothiophenes in kerosene by adsorption on rice husk activated carbon. Fuel, 88: 1975–1982.
  • Guo, J., Liang, J., Chu, Y. H., Sun, M. C., Yin, H. Q., and Li, J. J. (2012) Desulfurization activity of nickel supported on acid-treated activated carbons. Appl. Catal. A, 421–422: 142–147.
  • Seredych, M., and Bandosz, T. J. (2010) Adsorption of dibenzothiophenes on activated carbons with copper and iron deposited on their surfaces. Fuel Process. Technol., 91: 693–701.
  • Subhan, F., Liu, B. S., Zhang, Y., and Li, X. G. (2012) High desulfurization characteristic of lanthanum loaded mesoporous MCM-41 sorbents for diesel fuel. Fuel Process. Technol., 97: 71–78.
  • Subhan, F., and Liu, B. S. (2011) Acidic sites and deep desulfurization performance of nickel supported mesoporous AlMCM-41 sorbents. Chem. Eng. J., 178: 69–77.
  • Hussain, M., Abbas, N., Fino, D., and Russo, N. (2012) Novel mesoporous silica supported ZnO adsorbents for the desulphurization of biogas at low temperatures. Chem. Eng. J., 188: 222–232.
  • Karvan, O., Sirkecioglu, A., and Atakul, H. (2009) Investigation of nano-CuO/mesoporous SiO2 materials as hot gas desulphurization sorbents. Fuel Process. Technol., 90: 1452–1458.
  • Ko, C. H., Park, J. G., Han, S. S., Park, J. H., Cho, S. H., and Kim, J. N. (2007) Adsorptive desulfurization of diesel using metallic nickel supported on SBA-15 as adsorbent. Stud. Surf. Sci. Catal., 165: 881–884.
  • Sarda, K. K., Bhandari, A., Pant, K. K., and Jain, S. (2012) Deep desulfurization of diesel fuel by selective adsorption over Ni/Al2O3 and Ni/ZSM-5 extrudates. Fuel, 93: 86–91.
  • Srivastav, A., and Srivastava, V. C. (2009) Adsorptive desulfurization by activated alumina. J. Hazard. Mater., 170: 1133–1140.
  • ShahadatHussain, A. H. M., and Tatarchuk, B.J. (2013) Adsorptive desulfurization of jet and diesel fuels using Ag/TiOx–Al2O3 and Ag/TiOx–SiO2 adsorbents. Fuel, 107: 465–473.
  • Han, D., Li, X., Zhang, L., Wang, Y., Yan, Z., and Liu, Sh. (2012) Hierarchically ordered meso/macroporous γ-alumina for enhanced hydrodesulfurization performance. Microporous Mesoporous Mater., 158: 1–6.
  • Zaki, T., Mohamed, N. H., Nessim, M. I., and Abd El Salam, H. (2013) Characterization and application of nano-alumina sorbents for desulfurization and dearomatization of Suez crude petrolatum. Fuel Process. Technol., 106: 625–630.
  • Anbia, M., and Parvin, Z. (2011) Desulfurization of fuels by means of a nanoporous carbon adsorbent. Chem. Eng. Res. Des., 89: 641–647.
  • FarzinNejad, N., Shams, E., Amini, M. K., and Bennett, J. C. (2013) Ordered mesoporous carbon CMK-5 as a potential sorbent for fuel desulfurization: Application to the removal of dibenzothiophene and comparison with CMK-3. Microporous Mesoporous Mater., 168: 239–246.
  • FarzinNejad, N., Shams, E., Amini, M. K., and Bennett, J. C. (2013) Synthesis of magnetic mesoporous carbon and its application for adsorption of dibenzothiophene. Fuel.Process. Technol., 106: 376–384.
  • Farzin Nejad, N., Shams, E., and Amini, M. K. (2015) Synthesis of magnetic ordered mesoporous carbon (Fe-OMC) adsorbent and its evaluation for fuel desulfurization. J. Magn. Magn.Mater., 390: 1–7.
  • Zhou, H., Li, G., Wang, X., Jin, C., and Chen, Y. (2009) Preparation of a kind of mesoporous carbon and its performance in adsorptive desulfurization. J. Nat. Gas Chem., 18: 365–368.
  • Prabhu, N., Dalai, A. K., and Adjaye, J. (2011) Hydrodesulphurization and hydrodenitrogenation of light gas oil using NiMo catalyst supported on functionalized mesoporous carbon. Appl. Catal. A., 401: 1–11.
  • Hussain, M., and Ihm, S. K. (2009) Synthesis, characterization, and hydrodesulfurization activity of new mesoporous carbon supported transition metal sulfide catalysts. Ind. Eng. Chem. Res., 48: 698–707.
  • Zhao, D. Y., Feng, J. L., Huo, Q. S., Melson, N., Fredrickson, G. H., Chmelka, B. F., and Stucky, G. D. (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Sci., 279: 548–552.
  • Jun, S., Joo, S. H., Ryoo, R., Kruk, M., Jaroniec, M., Liu, Z., Ohsuna, T., and Terasaki, O. (2000) Synthesis of new nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc., 122: 10712–10713.
  • Lazaro, M. J., Calvillo, L., Bordeje, E. G., Moliner, R., Juan, R., and Ruiz, C.R. (2007) Functionalization of ordered mesoporous carbons synthesized with SBA-15 silica as template. Microporous Mesoporous Mater., 103: 158–165.
  • Lu, A. H. et al. (Eds.) (2010) Nanocasting: a versatile strategy for creating nanostructured porous materials. Nanoscience & Nanotechnology. 11, RSC Publishing: Cambridge.
  • Li, H., Xi, H., Zhu, S., Wen, Z., and Wang, R. (2006) Preparation, structural characterization, and electrochemical properties of chemically modified mesoporous carbon. Microporous Mesoporous Mater., 96: 357–362.
  • Vinu, A., Hossian, K. Z., Srinivasu, P., Miyahara, M., Anandan, S., Gokulakrishnan, N., Mori, T., Ariga, K., and Balasubramanian, V. V. (2007) Carboxy-mesoporous carbon and its excellent adsorption capability for proteins. J. Mater. Chem., 17: 1819–1825.
  • Weber Jr, W. J., and Morris, J. C. (1963) Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. ASCE, 89: 31–60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.