120
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Positional isomerism, stability, and polarizability of C20(CH2)n (n = 1–10), the cyclopropane adducts of the smallest fullerene: General formula for calculation of mean polarizability of fullerene derivatives C20XnYm and C60XnYm with fixed (n + m) number of different addends

, &
Pages 71-78 | Received 25 Oct 2016, Accepted 27 Oct 2016, Published online: 10 Nov 2016

References

  • Thilgen, C., and Diederich, F. (2006) Structural aspects of fullerene chemistry: A journey through fullerene chirality. Chem. Rev., 106: 5049–5135.
  • Troshin, P. A., Hoppe, H., Renz, J., Egginger, M., Mayorova, J. Yu., Goryachev, A. E., Peregudov, A. S., Lyubovskaya, R. N., Gobsch, G., Sariciftci, N. S., and Razumov, V. F. (2009) Material solubility-photovoltaic performance relationship in the design of novel fullerene derivatives for bulk heterojunction solar cells. Adv. Funct. Mater., 19: 779–788.
  • Tuktarov, A. R., and Dzhemilev, U. M. (2010) Diazo compounds in the chemistry of fullerenes. Russ. Chem. Rev., 79: 585–610.
  • Bulgakov, R. G., Sabirov, D. Sh., and Dzhemilev, U. M. (2013) Oxidation of fullerenes with ozone. Russ. Chem.Bull., Int.Ed., 62: 304–324.
  • Troshin, P. A., and Lyubovskaya, R. N. (2008) Organic chemistry of fullerenes: The major reactions, types of fullerene derivatives and prospects for their practical use. Russ. Chem. Rev., 77: 305–349.
  • Bulgakov, R. G., Galimov, D. I., and Dzhemilev, U. M. (2014) Synthesis, properties and transformations of fullerene peroxides. Russ. Chem. Rev., 83: 677–717.
  • Tzirakis, M. D., and Orfanopoulos, M. (2012) Radical reactions of fullerenes: From synthetic organic chemistry to materials science and biology. Chem. Rev., 113: 5262–5321.
  • Bingel, C. (1993) Cyclopropanierung von fullerenen. Chemische Berichte, 126: 1957–1959.
  • Frost, M., Faist, M. A., and Nelson, J. (2010) Energetic disorder in higher fullerene adducts: A quantum chemical and voltammetric study. Adv. Mater., 22: 4881−4884.
  • Morvillo, P., and Bobeico, E. (2008) Tuning the LUMO level of the acceptor to increase the open-circuit voltage of polymer-fullerene solar cells: a quantum chemical study. Sol. Energy Mater. Sol. Cells., 92: 1192−1198.
  • SabirovD. Sh. (2014) Polarizability as a landmark property for fullerene chemistry and materials science. RSC Adv., 4: 44996–45028.
  • Umeyama, T., and Imahori, H. (2014) Design and control of organic semiconductors and their nanostructures for polymer–fullerene-based photovoltaic devices. J. Mater. Chem. A, 2: 11545–11560.
  • Sabirov, D. Sh., Terentyev, A. O., and Bulgakov, R. G. (2015) Counting up the isomers and estimation of anisotropy of polarizability of the selected C60 and C70 bisadducts promising for organic solar cells. J. Phys. Chem. A., 119: 10697–10705.
  • Tuktarov, A. R., Korolev, V. V., Khalilov, L. M., Ibragimov, A. G., and Dzhemilev, Yu. M. (2009) Catalytic cyclopropanation of fullerene[60]with diazomethane. Russ. J. Org. Chem., 45: 1594−1597.
  • Curry, N. P., Doust, B., and Jelski, D. A. (2000) A computational study of the combinatorial addition of oxygen to buckminsterfullerene. J. Cluster Sci., 12: 385–390.
  • Sabirov, D. Sh. (2013) Anisotropy of polarizability of fullerene higher adducts forassessing the efficiency of their use in organic solar cells. J. Phys. Chem. C, 117: 9148–9153.
  • Sabirov, D. Sh., Terentyev, A. O., and Cataldo, F. (2016) Bisadducts of the C60 and C70 fullerenes with anthracene: Isomerism and DFT estimation of stability and polarizability. Comput. Theor. Chem., 1081: 44–48.
  • Prinzbach, H., Weiler, A., Landenberger, P., Wahl, F., Worth, J., Scott, L. T., Gelmont, M., Olevano, D., and Issendorff, B. (2000) Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature, 407: 60–63.
  • Lu, X., and Chen, Z. (2005) Curved pi-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and single-walled carbon nanotubes. Chem. Rev., 105: 3643–3696.
  • Lee, S., Suh, Y., Hwang, V. G., and Lee, K. H. (2011) Determination of atomic structures and relative stabilities of diadduct regioisomers of C20X2 (X= H, F, Cl, Br, and OH) by the hybrid density-functional. Bull. Korean Chem. Soc., 32: 3372–3376.
  • Siadati, A., and Mirabli, A., (2015) Diels–Adler versus 1,3-dipolar cycloaddition pathways in the reaction of C20 fullereneand 2-furan oxide. Progress React. Kinetics Mechanism., 40: 383–390.
  • Paquette, L. A. (1989) Dodecahedranes and allied spherical molecules. Chem. Rev., 89: 1051–1065.
  • Cross, R. J., Saunders, M., and Prinzbach, H. (1999) Putting helium inside dodecahedrane. Org. Lett., 1: 1479–1481.
  • Chistyakov, A. L., and Stankevich, I. V. (2002) On the possible existence of exo- and endohedral h5–p complexes of a C20 fullerene with transition metals. Phys. Solid Stat., 44: 593–595.
  • Gapurenko, O. A., Gribanova, T. N., Minyaev, R. M., and Minkin, V. I. (2007) Hypercoordinate atoms of secondrow elements in dodecahedrane endohedral complexes. Russ. Chem. Bull., 56: 856–862.
  • Starikov, A. G., Gapurenko, O. A., Buchachenko, A. L., Levin, A. A., and Breslavskaya, N. N. (2008) Quantum-chemical study of endohedral fullerenes. Russ. J. Gen. Chem., 78: 793–810.
  • Bulgakov, R. G., Galimov, D. I., and Sabirov, D. Sh. (2007) New property of the fullerenes: The anomalously effective quenching of electronically excited states owing to energy transfer to the C70 and C60 molecules. JETP Lett., 85: 632–635.
  • Tang, C.-M., Zhu, W.-H., and Deng, K.-M. (2010) Density functional calculations on the geometric structure and properties of the 3d transition metal atom doped endohedral fullerene M@C20F20 (M = Sc–Ni). Chin. Phys. B, 19: 033604.
  • Li, X. J., Yang, X. H., Song, L. M., Ren, H. J., and Tao, T. Z. A (2013) DFT study on structure, stability, and optical property of fullerenols. Struct. Chem., 24: 1185–1192.
  • Hwang, Y. G., Lee, S., and Lee, К. H. (2012) DFT study for substitution patterns of C20H18X2 regioisomers (X= F, Cl, Br, or OH). Bull. Korean Chem. Soc., 33: 641–646.
  • Xu, L., Tang, H., Li, Ch., Li, F., Li, X., and Tao, Sh. (2013) Structures, electronic properties, and nonlinear optical properties of Ce/Dy-encapsulated C20-glycine: a density-functional theory investigation. Struct. Chem., 24: 463–470.
  • Okada, S., Miyamoto, Y., and Saito, M. (2001) Three-dimentional crystalline carbon: stable polymers of C20 fullerene. Phys. Rev., B. 64: 245405, 4 pages.
  • Sabirov, D. Sh. (2013) Polarizability of C60 fullerene dimer and oligomers: the unexpected enhancement and its use for rational design of fullerene-based nanostructures with adjustable properties. RSC Adv., 3: 19430–19439.
  • Sabirov, D. Sh., Khursan, S. L., and Bulgakov, R. G. (2008) 1,3-Dipolar addition reactions to fullerenes: the role of the local curvature of carbon surface. Russ. Chem. Bull., Int. Ed., 57: 2520–2525.
  • Sabirov, D. Sh., and Bulgakov, R. G. (2011) Reactivity of fullerenes family towards radicals in terms of local curvature. Comput. Theor. Chem., 963: 185–190.
  • Sabirov, D. Sh., Bulgakov, R. G., and Khursan, S. L. (2011) Indices of the fullerenes reactivity. ARKIVOC, 200–224.
  • Perdew, J. P., Burke, K., and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 77: 3865–3868
  • Laikov, D. N. The development of saving approach to calculation of molecules by a density functional method, its application to the complicated chemical problems, PhD thesis, Moscow State University, 2000 (in Russian)
  • Laikov, D. N., and Ustynyuk, Yu. A. (2005) PRIRODA-04: A quantum-chemical program suite. New possibilities in the study of molecular systems with the application of parallel computing. Russ. Chem. Bull. Int. Ed., 54: 820–826.
  • Shestakov, A. F. (2008) Reactivity of fullerene C60. Russ. J. Gen. Chem., 78: 811–821.
  • Sabirov, D. Sh., and Bulgakov, R. G. (2011) Polarizability of oxygen-containing fullerene derivatives C60On and C70O with epoxide/oxidoannulene moieties. Chem. Phys. Lett., 506: 52–56.
  • Sabirov, D. Sh., Tukhbatullina, A.A., and Bulgakov, R. G. (2012) Dependence of static polarizabilities of C60Xn fullerene cycloadducts on the number of added groups X = CH2 and NH (n = 1–30). Comput. Theor. Chem. 993: 113–117.
  • Sabirov, D. Sh., and Bulgakov, R. G. (2010) Reactivity of fullerene derivatives C60O and C60F18 (C3v) in terms of local curvature and polarizability. Fullerenes Nanotubes Carbon Nanostruct. 18: 455–457.
  • Sabirov, D. Sh., Garipova, R.R., and Bulgakov, R. G. (2012) General formula for accurate calculation of halofullerenes polarizability. Chem. Phys. Lett., 523: 92–97.
  • Tulyabaev A. R., and Khalilov, L. M. (2011) On accuracy of the 13C NMR chemical shift GIAO calculations of fullerene C60 derivatives at PBE/3z approach. Comput. Theor. Chem., 97: 12–18.
  • Pankratyev, E. Yu., Tulyabaev, A. R., and Khalilov, L. M. (2011) How reliable are GIAO calculations of 1H and 13C NMR chemical shifts? A statistical analysis and empirical corrections at DFT (PBE/3z) level. J. Comp. Chem., 32: 1993–1997.
  • Sabirov, D. Sh., Bulgakov, R. G., Khursan, S. L., and Dzhemilev, U. M. (2009) A new approach to the estimation of the fullerene reactivity in 1,3-dipolar addition based on polarizability indices. Dokl. Phys. Chem., 425: 54–56.
  • Sabirov, D. Sh., and Osawa, E. (2015) Information entropy of fullerenes. J. Chem. Inf. Model, 55: 1576–1584
  • Pimenova, A. S., Kozlov, A. A., Goryunkov, A. A., Markov, V. Yu., Khavrel, P. A., Avdoshenko, S. M., Vorobiev, V. A., Ioffe, I. N., Sakharov, S. G., Troyanov, S. I., and Sidorov, L. N. (2007) Synthesis and characterization of difluoromethylene-homo[60]fullerene, C60(CF2). Chem. Commun., 374–376.
  • Komatsu, K., Wang, G. W., Murata, Y., Tanaka, T., and Fujiwara, K. (1998) Mechanochemical synthesis and characterization of the fullerene dimer C120. J. Org. Chem., 63: 9358–9366
  • Sabirov, D. Sh., Garipova, R. R., and Bulgakov, R. G. (2012) Polarizability of C70 fullerene derivatives C70X8 and C70X10. Fullerenes, Nanotubes, Carbon Nanostruct., 20: 386–390.
  • Ren, X.-Y. and Liu, Z.-Y. (2007) Structural and electron properties of the highest epoxygenated fullerene C60O30, a DFT study. J. Mol. Graph. Model., 26: 336–341.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.