165
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Effective thermal conductivity and rheological characteristics of ethylene glycol-based nanofluids with single-walled carbon nanohorn inclusions

, &
Pages 86-93 | Received 19 Sep 2016, Accepted 12 Nov 2016, Published online: 29 Nov 2016

References

  • Choi, S. U. S., and Eastman, J. A. (1995) Enhancing thermal conductivity of fluids with nanoparticles in developments and applications of non-Newtonian flows. ASME FED 231/MD, 66: 99–103.
  • Fan, J., and Wang, L. (2011) Review of heat conduction in nanofluids. J. Heat Transfer., 133: 040801–13.
  • Angayarkanni, S. A., and Philip, J. (2015) Review on thermal properties of nanofluids: Recent developments. Adv Colloid Interface Sci., 225: 146–176.
  • Azmi, W. H., Sharma, K. V., Mamat, R., Najafi, G., and Mohamad, M. S. (2016) The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids–A review. Renew. Sust. Energy Rev., 53: 1046–1058.
  • Devendiran, D. K., and Amirtham, V. A. (2016) A review on preparation, characterization, properties and applications of nanofluids. Renew. Sust. Energy Rev., 60: 21–40.
  • Buongiorno, J., et al. (2009) A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys., 106: 1–14.
  • Harish, S., Ishikawa, K., Einarsson, E., Aikawa, S., Shiomi, S. C. J., and Maruyama, S. (2012) Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions. Int. J. Heat Mass Transfer., 55: 3885–3890.
  • Harish, S., Ishikawa, K., Einarsson, E., Aikawa, S., Inoue, T., Zhao, P., Watanabe, M., Chiashi, S., Shiomi, J., and Maruyama, S. (2012) Temperature dependent thermal conductivity increase of aqueous nanofluid with single walled carbon nanotube inclusion. Mater. Exp., 2: 213–223.
  • Sabiha, M. A., Mostafizur, R. M., Saidur, R., and Mekhilef, S. (2016) Experimental investigation on thermo physical properties of single walled carbon nanotube nanofluids. Int. J. Heat Mass Transfer., 93: 862–871.
  • Yu, W., Xie, H., Wang, X., and Wang, X. (2011) Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys. Lett. A., 375: 1323–1328.
  • Branson, B. T., Beauchamp, P. S., Beam, J. C., Lukehart, C. M., and Davidson, J. L. (2013) Nanodiamond nanofluids for enhanced thermal conductivity. ACS Nano., 7: 3183–3189.
  • Garg, P., Alvarado, J. L., Marsh, C., Carlson, T. A., Kessler, D. A., and Annamalai, K. (2009) An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int. J. Heat Mass Transfer., 52: 5090–5101.
  • Meng, Z., Wu, D., Wang, L., Zhu, H., and Li, Q. (2012) Carbon nanotube glycol nanofluids: Photo-thermal properties, thermal conductivities and rheological behavior. Particuology, 10: 614–618.
  • Li, F. C., Yang, J. C., Zhou, W. W., He, Y. R., Huang, Y. M., and Jiang, B. C. (2013) Experimental study on the characteristics of thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids containing multiwalled carbon nanotubes. Thermochim. Acta., 556: 47–53.
  • Farbod, M., Ahangarpour, A., and Etemad, S. G. (2015) Stability and thermal conductivity of water-based carbon nanotube nanofluids. Particuology, 22: 59–65.
  • Kamel, B. M, Mohamed, A. M., Sherbiny, E. l., and Abed, K. A. (2016) Rheology and thermal conductivity of calcium grease containing multi-walled carbon nanotube. Fuller. Nanotub. Carbon Nanostruct., 24: 260–265.
  • Baratpour, M., Karimipour, A., Afrand, M., and Wongwises, S. (2016) Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol. Int. Commun. Heat Mass Transfer., 74: 108–113.
  • Baby, T. T., and Ramaprabhu, S. (2010) Investigation of thermal and electrical conductivity of graphene based nanofluids. Appl. Phys., 108: 124308-1-6.
  • Gupta, S. S., Manoj Siva, V., Krishnan, S., Sreeprasad, T. S., Singh, P. K., Pradeep, T., and Das, S. K. (2011) Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J. Appl. Phys., 110(1–6): 084302.
  • Jyothirmayee Aravind, S. S., and Ramaprabhu, S. (2011) Surfactant free graphene nanosheets based nanofluids by in-situ reduction of alkaline graphite oxide suspensions. J. Appl. Phys., 110(1–5): 12326.
  • Ijam, A., Saidur, R., Ganesan, P., and Moradi Golsheikh, A. (2015) Stability, thermo-physical properties, and electrical conductivity of graphene oxide-deionized water/ethylene glycol based nanofluid. Int. J. Heat Mass Transfer., 87: 92–103.
  • Kausar, A. (2016) Enhanced electrical and thermal conductivity of modified poly (acrylonitrile-cobutadiene)- based nanofluid containing functional carbon black-graphene oxide. Fuller. Nanotub. Carbon Nanostruct., 24: 278–285.
  • Taha-Tijerina, J. J., Narayana, T. N., Tiwary, C. S., Lozano, K., Chipara, M., and Ajayan, P. M. (2016) Nanodiamond-based thermal fluids. ACS Appl. Mater. Interfaces, 6: 4778–4785.
  • Syam Sundar, L., Hortiguela, M. J., Singh, M. K., and Sousa, A. C. M. (2016) Thermal conductivity and viscosity of water based nanodiamond (ND) nanofluids: An experimental study. Int. Commun. Heat Mass Transfer., 76: 245–255.
  • Harish, S., Orejon, D., Takata, Y., and Kohno, M. (2015) Thermal conductivity enhancement of lauric acid phase change nanofluid in solid and liquid state with single-walled carbon nanohorn inclusions. Thermochim. Acta., 600: 1–6.
  • Zin, V., Barison, S., Agresti, F., Colla, L., Pagura, C., and Fabrizio, M. (2016) Improved tribological and thermal properties of lubricants by graphene based nano-additives. RSC Adv., 6: 59477–59486.
  • Bobbo, S., Fedele, L., Benetti, A., Colla, L., Fabrizio, M., Pagura, C., and Barison, S. (2012) Viscosity of water based SWCNH and TiO2 nanofluids. Exp. Thermal Fluid Sci., 36: 65–71.
  • Pastoriza-Gallego, M. J., Lugo, L., Legido, J. L., and Pineiro, M. M. (2011) Rheological Non-newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids. Nanoscale Res. Lett., 6: 1–7.
  • Zyla, G., and Fal, J. (2016) Experimental studies on viscosity, thermal and electrical conductivity of aluminum nitride-ethylene glycol (AlN–EG) nanofluid. Thermochim. Acta., 637: 11–16.
  • Mariano, A., Pastoriza-Gallego, M. J., Lugo, L., Camacho, A., Canzonieria, S., and Pineiro, M. M. (2013) Thermal conductivity, rheological behaviour and density of non-Newtonian ethylene glycol-based SnO2 nanofluids. Fluid Phase Equilibria., 337: 119–124.
  • Zyla, G., Fal, J., Gizowska, M., Witek, A., and Cholewa, M. (2015) Dynamic viscosity of aluminum oxide-ethylene glycol (Al2O3-EG) nanofluids. Acta Phys. Pol. A., 128: 240–242.
  • Li, X., Zou, C., Wang, T., and Lei, X. (2015) Rheological behavior of ethylene glycol-based SiC nanofluids. Int. J. Heat Mass Transfer., 84: 925–930.
  • Zyla, G., Witek, A., and Gizowska, M. (2015) Rheological profile of boron nitride–ethylene glycol nanofluids. J. Appl. Phys., 117(1–5): 014302.
  • Shu, R., Gan, Y., Lv, H., and Tan, D. (2016) Preparation and rheological behavior of ethylene glycol-based TiO2 nanofluids. Colloids Surf. A: Physicochem. Eng. Asp., 509: 86–90.
  • Mariano, A., Pastoriza-Gallego, M. J., Lugo, L., Mussari, L., Pineiro, M. M. (2015) Co3O4 ethylene glycol-based nanofluids: Thermal conductivity, viscosity and high pressure density. Int. J. Heat Mass Transfer., 85: 54–60.
  • Pastoriza-Gallego, M. J., Lugo, L., Cabaleiro, D., Legido, J. L., and Pineiro, M. M. (2014) Thermophysical profile of ethylene glycol-based ZnO nanofluids. J. Chem. Thermodyn., 73: 23–30.
  • Zyla, G. (2016) Thermophysical properties of ethylene glycol based yttrium aluminum garnet (Y3Al5O12–EG) nanofluids. Int. J. Heat Mass Transfer., 92: 751–756.
  • Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., and Kokai, F., et al. (1999) Nanoaggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett., 309: 165–170.
  • Harish, S., Orejon, D., Takata, Y., and Kohno, M. (2015) Thermal conductivity enhancement of lauric acid phase change nanofluid with graphene nanoplatelets. Appl. Therm. Engg., 80: 205–211.
  • Carslaw, H. S., and Jaeger, J. C. (1986) Conduction of Heat in Solids. (2nd ed.). Oxford University Press: New York.
  • Di Guilio, R., and Teja, A. S. (1990) Thermal conductivity of poly (ethylene glycols) and their binary mixtures. J. Chem. Eng. Data., 35: 117–121.
  • McLinden, M. O., Klein, S. A., Lemmon, E. W., and Peskin, A. P. (1998) Nist Thermodynamic and Transport Properties of Refrigerant Mixtures—REFPROP, Version 6.01, NIST Standard Reference Database 23, National Institute of Standards and Technology: Gaithersburg, MD.
  • Nan, C. W., Birringer, R., Clarke, D. R., and Gleiter, H. (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys., 81: 6692–6699.
  • Huxtable, S. T., Cahill, D. G., Shenogin, S., Xue, L. P., Ozisik, R., Barone, P., Usrey, M., Strano, M. S., Siddons, G., Shim, M., and Keblinski, P. J. (2003) Interfacial heat flow in carbon nanotube suspensions. Nat. Mater., 2: 731–734.
  • Schmidt, A. J., Alper, J. D., Chiesa, M., Chen, G., Das, S. K., and Schifferli, K. H. (2008) Probing the gold nanorod-ligand–solvent interface by plasmonic absorption and thermal decay. J. Phys. Chem. C., 112: 13320–13323.
  • Kang, S. D., Li, S. C., Lee, E. S., Cho, Y. W., Kim, Y. H., Lyeo, H., and Lee, Y. H. (2012) Interfacial thermal conductance observed to be higher in semiconducting than metallic carbon nanotubes. ACS Nano., 6: 3853–3860.
  • Hamilton, R. L., and Crosser, O. K. (1962) Thermal conductivity of heterogeneous Two-component systems. I EC Fundam., 1: 187–191.
  • Prasher, R., Song, D., Wang, J., and Phelan, P. (2006) Measurements of nanofluid viscosity and its implications for thermal applications. Appl. Phys. Lett., 89: 133108-1-3.
  • Simons, R. E. (2006) Comparing heat transfer rates of liquid coolants using the Mouromtseff number. Electron. Cooling., 12. https://www.electronicscooling.com/2006/05/comparing-heat-transfer-rates-of-liquidcoolants-using-the-mouromtseff-number/
  • Kumaresan, V., Velraj, R., and Das, S. K. (2012) Convective heat transfer characteristics of secondary refrigerant based CNT nanofluids in a tubular heat exchanger. Int. J. Refriger., 35: 2287–2296. https://www.electronicscooling.com/2006/05/comparing-heat-transfer-rates-of-liquidcoolants-using-the-mouromtseff-number/
  • Sadeghinezhad, E., Mehrali, M., Latibari, S. T., Mehrali, M., Kazi, S. N., Oon, C. S., and Metselaar, H. S. C. (2014) Experimental investigation of convective heat transfer using graphene nanoplatelet based nanofluids under turbulent flow conditions. Ind. Eng. Chem. Res., 53: 12455−12465.
  • Selvam, C., Balaji, T., Mohan Lal, D., and Harish, S. (2017) Convective heat transfer coefficient and pressure drop of water-ethylene glycol mixture with graphene nanoplatelets. Exp. Thermal Fluid Sci., 80: 67–76.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.