256
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Multi-walled carbon nanotube supported aminomethylphosphine-Ru(II) complexes: Optical behavior and catalytic properties in transfer hydrogenation of acetophenone derivatives

, , &
Pages 133-141 | Received 13 Nov 2016, Accepted 09 Dec 2016, Published online: 21 Dec 2016

References

  • Garrau, P.E. (1981) Chem. Rev. ΔR ring contributions to 31P NMR parameters of transition-metal-phosphorus chelate complexes. Chem. Rev., 81:229–266.
  • Fawcett, J., Kemmit, R. D.W., Russel, D. R., and Serindağ, O. (1995) Zerovalent palladium and platinum complexes of aminomethyl phosphines. Crystal structure of the palladium(0) dibenzylideneacetone complex [Pd(PhCH=CHPh){((C6H11)2PCH2)2NMe}]. J. Organomet. Chem., 486:171–176.
  • Serindağ, O., Kemmit, R.D.W., Fawcett, J., and Russel, D.R.(1995) Synthesis of sulphonated aminomethyl phosphines and some nickel(II), palladium(II), platinum(II) and rhodium(I) complexes. Crystal structure of [Et3NH][(Ph2PCH2)2N(CH2)2SO3]. Trans Met Chem., 20:548–551.
  • Serindağ, O. (1997) Synthesis of some platinum(II) diphosphine complexes of the type [PtX2(P-P)] (X2 = CO3, X =CH3COO, CF3COO, NCO). Synth. React. Inorg. Met-Org., 27:69–76.
  • Serindağ, O., Kemmit,, R.D.W., Fawcett, J., and Russel, D. R. (1999) Preparation and reaction of platinum(II) complexes of N,N-bis(dicyclohexylphosphinomethyl)aminomethane. Crystal structures of (Cy2PCH2)2NMe (Cy = cyclohexyl) and [PtX2{(Cy2PCH2)2NMe}], (X = Cl and I). Trans. Met. Chem., 24:486–491.
  • Esposito, B.P., and Najjar, R. (2002) Interactions of antitumoral platinum-group metallodrugs with albümin. Coord. Chem. Rev., 232:137–149.
  • Keleş, M., Aydin, Z., and Serindağ, O. (2007) Synthesis of palladium complexes with bis(diphenylphosphinomethyl)amino ligands: A catalyst for the Heck reaction of aryl halide with methyl acrylate. J. Organomet. Chem., 692:1951–1955.
  • Keleş, M., Keleş, T., and Serindağ, O. (2008) Palladium complexes with bis(diphenylphosphinomethyl)amino ligands and their application as catalysts for the Heck reaction. Trans. Met. Chem., 33:717–720.
  • Uruş, S., Serindağ, O., and Diğrak, M. (2005) Synthesis, characterization, and antimicrobial activities of Cu(I), Ag(I), Au(I), and Co(II) complexes with [CH3N(CH2PPh2)2]. Heteroatom. Chem., 16:484–491.
  • Fawcett, J., Hoye, P.A.T., Kemmitt, R.D.W., Law, D.J., and Russel, D.R. (1993) Synthesis of bis(phosphinomethyl)amines via bis(hydroxymethyl)phosphonium salts. Isolation of 9,9-bis(hydroxymethyl)-9-phosphoniabicyclo[3.3.1]nanone hydrogensulfate and chloride salts, and the crystal structures of [PPh2(CH2OH)2]+Cl− and [(C8H11)2PCH2]2NCHMePh. J. Chem. Soc. Dalton Trans., 17:2563–2568.
  • Keleş, M., Altan, O., and Serindağ, O. (2008) Synthesis and characterization of bis(diphenylphosphinomethyl)amino ligands and their Ni(II), Pd(II) complexes: Application to hydrogenation of styrene. Heteroatom. Chem., 19:113–118.
  • Keleş, M., Serindağ, O., Yaşar, S., and Özdemir, İ.(2009) Hydrogenation of acetophenone and its derivatives with 2-propanol using aminomethyl phosphine-ruthenium catalysis. Phosphorus, Sulfur, Silicon Relat. Elem., 185:165–170.
  • Uruş, S., Keleş, M., and Serindağ, O. (2010) Synthesis of silica-supported platinum(II) and Nickel(II) complexes of bis(diphenylphosphinomethyl)amino ligand: applications as catalysts for the synthesis of 2-methyl-1,4-naphthoquinone (Vitamin K3). J. Inorg. Organomet. Polym., 20:152–160.
  • Uruş, S., Keleş, M., and Serindağ, O. (2010) Synthesis and catalytic activities of Cu(I) complexes of bis(diphenylphosphinomethyl)amino ligand and its silica-supported form. Synth. React. Inorg. M., 40:613–620.
  • Maier, L. (1965) Organische Phosphorverbindungen XVII. Darstellung von Alkylen-bis-phosphonsäurechloriden und Alkylen-bis-thiophosphonsäurechloriden und deren Reaktion mit GRIGNARD-Verbindungen. Helv. Chim. Acta, 48:133–142.
  • Kostas, I. D., Steele, B.R., Terzis, A., and Amosova, S.V.A. (2003) Palladium complex with a new hemilabile amino- and sulfur-containing phosphinite ligand as an efficient catalyst for the Heck reaction of aryl bromides with styrene. The effect of the amino group. Tetrahedron, 59:3467–3473.
  • Dongil, A.B., Pastor-Pérez, L., Fierro, J.L.G., Escalona, N., and Sepúlveda-Escribano, A. (2016) Synthesis of palladium nanoparticles on carbon nanotubes and graphene for the chemoselective hydrogenation of para-chloronitrobenzene. Catal. Commun.75:55–59.
  • Zannotti, M., Giovannetti, R., Anna D'Amato, C., and Rommozzi, E. (2016) Spectroscopic studies of porphyrin functionalized multiwalled carbon nanotubes and their interaction with TiO2 nanoparticles surface. Spectrochim. Acta, Part A., 153:22–29.
  • Navidi, M., Movassagh, B., and Rayati, S. (2013) Multi-walled carbon nanotubes functionalized with a palladium(II)-Schiff base complex: A recyclable and heterogeneous catalyst for the copper-, phosphorous- and solvent-free synthesis of ynones. Applied Catal. A: Gen., 452:24–28.
  • Navidi, M., Rezaei,, N., and Movassagh, B. (2013) Palladium(II) Schiff base complex supported on multi-walled carbon nanotubes: A heterogeneous and reusable catalyst in the Suzuki–Miyaura and copper-free Sonogashira–Hagihara reactions. J. Organomet. Chem., 743:63–69.
  • Hamilton, C.E., and Barron, A.R. (2009) Phosphine functionalized single-walled carbon nanotubes. Main Gr. Chem., 8:275–281.
  • Zhang, Y., Zhang, H.B., Lin, G.D., Chen, P., Yuan, Y.Z., and Tsai, K.R. (1999) Preparation, characterization and catalytic hydroformylation properties of carbon nanotubes-supported Rh–phosphine catalyst. Appl. Catal. A: Gen., 187:213–224.
  • Movassagh, B., Parvis, F.S., and Navidi, M. (2015) Pd(II) salen complex covalently anchored to multi-walled carbon nanotubes as a heterogeneous and reusable precatalyst for Mizoroki–Heck and Hiyama crosscoupling reactions. Appl. Organomet. Chem., 29:40–44.
  • Bazarganipour, M., and Salavati-Niasari, M. (2016) Synthesis, characterization and chemical binding of a Ni(II) Schiff base complex on functionalized MWNTs, Catalytic oxidation of cyclohexene with molecular oxygen. Chem. Eng. J., 286:259–265.
  • Hu, J., Liu, H., Wang, L., Li, N., Xu, T., Lu, W., Zhu, Z., and Chen, W. (2016) Electronic properties of carbon nanotubes linked covalently with iron phthalocyanine to determine the formation of high-valent iron intermediates or hydroxyl radicals. Carbon, 100:408–416.
  • Takassi, M. A., and Zadehnazari, A. (2016) Nanocomposites of triazole functionalized multi-walled carbon nanotube with chemically grafted polyimide: Preparation, characterization, and properties. Fullerenes Nanotubes Carbon Nanostruct., 24:128–138.
  • Sokolov, V.I., Rakov, E.G., Bumagin, N.A., and Vinogradov, M.G. (2010) New method to prepare nanopalladium clusters immobilized on carbon nanotubes: A very efficient catalyst for forming carbon-carbon bonds and hydrogenation. Fullerenes Nanotubes Carbon Nanostruct., 18:558–563.
  • Saleh, T. A. (2011) The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Appl. Surf. Sci., 257:7746–7751.
  • Uruş, S., Çaylar, M., and Karteri, İ. (2016) Synthesis of graphene supported bis(diphenylphosphinomethyl)amino ligands and their Pd(II) and Pt(II) complexes: Highly efficient and recoverable nano-catalysts on vitamin K3 production. Chem. Eng. J., 306:961–972.
  • Caglar, M., Ilican, S., and Caglar, Y. (2009) Influence of dopant concentration on the optical properties of ZnO: in films by sol–gel method. Thin Solid Films, 517:5023–5028.
  • Water, W., Chu, S.Y., Juang, Y.D., and Wu, S.J. (2002) Li2CO3-doped ZnO films prepared by RF magnetron sputtering technique for acoustic device application. Mater. Lett., 57:998–1003.
  • Karteri, İ., Karataş, Ş., Çavas, M., Arif, B., and Yakuphanoğlu, F.(2016) The dielectric and optoelectronic properties of graphene oxide films by solution-casting technique. J. Nanoelectron. Optoelectron.11:29–35.
  • Murali, K.R., Kalaivanan, A., Perumal, S., and Pillai, N.N. (2010) Sol–gel dip coated CdO:Al films. J. Alloys Compd., 503:350–353.
  • Shinde, V.R., Gujar, T.P., Lokhande, C.D., Mane, R.S., and Han, S.H. (2006) Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study. Mater. Chem. Phys., 96:326–330.
  • Hudson, R., Chazelle, V., Bateman, M., Roy, R., Li, C.J., and Moores, A. (2015) Sustainable synthesis of magnetic ruthenium-coated iron nanoparticles and application in the catalytic transfer hydrogenation of ketones. ACS Sustainable Chem. Eng., 3:814–820.
  • Zanfir, M., Sun, X., and Gavriilidis, A. (2008) Microstructured mesh contactor for asymmetric transfer hydrogenation with simultaneous stripping: Modeling and experiments. Ind. Eng. Chem. Res., 47:8995–9005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.