250
Views
5
CrossRef citations to date
0
Altmetric
Articles

FePt/reduced graphene oxide composites for high capacity hydrogen storage

, , &
Pages 295-300 | Received 04 Nov 2016, Accepted 25 Jan 2017, Published online: 01 May 2017

References

  • Jena, P. (2011) Materials for hydrogen storage: past, present, and future. J. Phys. Chem. Lett., 2: 206–211.
  • DOE Targets for On-Board Hydrogen Storage Systems for Light-Duty Vehicles.
  • Ahluwalia, R. K., and Peng, J. K. (2008) Dynamics of cryogenic hydrogen storage in insulated pressure vessels for automotive applications. Int. J. Hydrogen Ener., 33: 4622–4633.
  • Klyamkin, S. N. (2007) Metal hydride compositions on the basis of magnesium as materials for hydrogen accumulation. Russ. J. Gen. Chem., 77: 712–720.
  • Srinivas, G., Burress, J., and Yildirim, T. (2012) Graphene oxide derived carbons (GODCs): synthesis and gas adsorption properties. Ener. Environ. Sci., 5: 453–6459.
  • Chahine, R., and Bose, T. K. (1994) Low-pressure adsorption storage of hydrogen. Int. J. Hydrogen Ener., 19: 161–164.
  • Amankwah, K. A. G., Noh, J. S., and Schwarz, J. A. (1989) Hydrogen storage on superactivated carbon at refrigeration temperatures. Int. J. Hydrogen Ener., 14: 437–447.
  • Rowsell, J. L. C., and Yaghi, O. M. (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal−organic frameworks. J. Am. Chem. Soc., 128: 1304–1315.
  • Collins, D. J., and Zhou, H.-C. (2007) Hydrogen storage in metal–organic frameworks. J. Mater. Chem., 17: 3154–3160.
  • Kim, H.-S., Lee, H., Han, K.-S., Kim, J.-H., Song, M.-S., Park, M.-S., Lee, J.-Y., and Kang, J.-K. (2005) Hydrogen storage in Ni nanoparticle-dispersed multiwalled carbon nanotubes. J. Phys. Chem. B, 109: 8983–8986.
  • R. Campesi, F. Cuevas, R. Gadiou, E. Leroy, M. Hirscher, C. Vix-Guterl, and Latroch, M. (2008) Hydrogen storage properties of Pd nanoparticle/carbon template composites. Carbon, 46: 206–214.
  • Yingwei, L., and Yang, R. T. (2007) Hydrogen storage on platinum nanoparticles doped on superactivated carbon. J. Phys. Chem. C, 111: 11086–11094.
  • Chena, Y., and Liu, Y. (2014) Preparation of porous carbon with high dispersion of Ru nanoparticles by sol–gel method and its application in hydrogen storage. J. Mater. Chem. A, 2: 9193–9199.
  • Liu, C.-S., An, H., and Zeng, Z. (2011) Titanium-capped carbon chains as promising new hydrogen storage media. Phys. Chem. Chem. Phys., 13: 2323–2327.
  • Reyhani, A., Mortazavi, S. Z., Mirershadi, S., Moshfegh, A. Z., Parvin, P., and Nozad Golikand, A. (2011) Hydrogen storage in decorated multiwalled carbon nanotubes by Ca, Co, Fe, Ni, and Pd nanoparticles under ambient conditions. J. Phys. Chem. C, 115: 6994–7001.
  • Moradi, S. E., Amirmahmoodi, S., and Baniamerian, M. J. (2010) Hydrogen adsorption in metal-doped highly ordered mesoporous carbon molecular sieve. J. Alloys Compd., 498: 168–171.
  • Li, Y., and Yang, R. T. (2006) Significantly enhanced hydrogen storage in metal−organic frameworks via spillover, J. Am. Chem. Soc. 128: 726–727.
  • Zhou, H., Liu, X., Zhang, J., Yan, X., Liu, Y., and Yuan, A. (2014) Enhanced room-temperature hydrogen storage capacity in Pt-loaded graphene oxide/HKUST-1 composites, Int. J. Hydrogen Ener. 39: 2160–2167.
  • Zhou, H., Zhang, J., Zhang, J., Yan, X., Shen, X., and Yuan, A. (2015) High-capacity room-temperature hydrogen storage of zeolitic imidazolate framework/graphene oxide promoted by platinum metal catalyst, Int. J. Hydrogen Ener. 40: 12275–12285.
  • Zhou, H., Zhang, J., Ji, D., Yuan, A., and Shen, X. (2016) Effect of catalyst loading on hydrogen storage capacity of ZIF-8/graphene oxide doped with Pt or Pd via spillover, Microporous Mesoporous Mater. 229: 68–75.
  • Zhang, J., Ji, D., Zhou, H., Yan, X., and Yuan, A. (2017) Nickel-platinum nanoparticles supported on zeolitic imidazolate framework/graphene oxide as high-performance adsorbents for ambient-temperature hydrogen storage, J. Nanosci. Nanotechnol., 17: 1400–1406.
  • Tozzini, V., and Pellegrini, V. (2013) Prospects for hydrogen storage in graphene. Phys. Chem. Chem. Phys., 15: 80–89.
  • Lyth, S. M., Shao, H., Liu, Y., Sasaki, K., and Akiba, E. (2014) Hydrogen adsorption on graphene foamsynthesized by combustion of sodium ethoxide. Int. J. Hydrogen Ener., 39: 376–380.
  • Park, N., Hong, S., Kim, G., and Jhi, S. (2007) Computational study of hydrogen storage characteristics of covalent-bonded graphenes. J. Am. Chem. Soc., 129: 8999–9003.
  • Ma, L. P., Wu, Z. S., Li, J., Wu, E. D., Ren, W. C., and Cheng, H. M. (2009) Hydrogen adsorption behavior of graphene above critical temperature. Int. J. Hydrogen Ener., 34: 2329–2332.
  • Sarkar, A. K., Saha, S., Ganguly, S., Banerjee, D., and Kargupta, K. (2014) Hydrogen storage on graphene using Benkeser reaction. Int. J. Energy Res., 38: 1889–1895.
  • Gadipelli, S., and Guo, Z. X. (2015) Graphene-based materials: synthesis and gas sorption, storage and separation. Prog. Mater. Sci., 69: 1–60.
  • Henwood, D., and Carey, J. D. (2007) Ab initio investigation of molecular hydrogen physisorption on graphene and carbon nanotubes. Phys. Rev. B, 75: 245413.
  • Wang, H., Yuan, X., Wu, Y., Huang, H., Peng, X., Zeng, G., Zhong, H., Liang, J., and Ren, M. (2013) Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation. Adv. Colloid Interface Sci., 195–196: 19–40.
  • Hummers, W. S., and Offeman, R. E. (1958) Preparation of graphitic oxide. J. Am. Chem. Soc., 80: 1339–1339.
  • Chen, D., Zhao, X., Chen, S., Li, H., Fu, X., Wu, Q., Li, S., Li, Y., Su, B.-L., and Ruoff, R. S. (2014) One-pot fabrication of FePt/reduced graphene oxide composites as highly active and stable electrocatalysts for the oxygen reduction reaction. Carbon, 68: 755–762.
  • Brunauer, S., Emmett, P. H., and Teller, E. (1938) Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 60: 309–319.
  • Zhang, J., Yang, H., Yang, K., Fang, J., Zou, S., Luo, Z., Wang, H., Bae, I.-T., and Jung, D. Y. (2010) Monodisperse Pt3Fe nanocubes: synthesis, characterization, self-assembly, and electrocatalytic activity. Adv. Funct. Mater., 20: 3727–3733.
  • Qiu, J.-D., Wang, G.-C., Liang, R.-P., Xia, X.-H., and Yu, H.-W. (2011) Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. J. Phys. Chem. C, 115: 15639–15645.
  • Liu, J., Tao, L., Yang, W., Li, D., Boyer, C., Wuhrer, R., Braet, F., and Davis, T. P. (2010) Synthesis, characterization, and multilayer assembly of pH sensitive graphene−polymer nanocomposites. Langmuir, 26: 10068–10075.
  • Moradi, S. (2014) Enhanced hydrogen adsorption by Fe3O4–graphene oxide materials. Appl. Phys. A, 199: 1–6.
  • Talu, O., and Kabel, R. L. (1987) Isosteric heat of adsorption and the vacancy solution model. AIChE J., 33: 510–514.
  • Kabbour, H., Baumann, T. F., Satcher, J. H., Saulnier, A., and Ahn, C. C. (2006) Toward new candidates for hydrogen storage:  high-surface-area carbon aerogels. Chem. Mater., 18: 6085–6087.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.