109
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Optical properties of carbon-containing titanium oxide nanocomposites obtained by the pulsed plasma chemical method

, , , &
Pages 343-347 | Received 27 Feb 2017, Accepted 01 Mar 2017, Published online: 08 Jun 2017

References

  • Snider, G., and Ariya, P. (2010) Photo-catalytic oxidation reaction of gaseous mercury over titanium dioxide nanoparticle surfaces. Chem. Phys. Lett. 491(1): 23–28.
  • Peng, T., Zhao, D., Dai, K., Shi, W., and Hirao, K. (2005) Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. J. Phys. Chem. 109(11): 4947–4952.
  • Richards, B. S. (2003) Single-material TiO2 double-layer antireflection coatings. Sol. Energy Mater. Sol. Cells 79: 369–378.
  • Pugachevskii, M. A., Zavodinskii, V. G., and Kuz'menko, A. P. (2011) Dispersion of zirconium dioxide by pulsed laser radiation. Tech. Phys. 56(2): 254–258.
  • Pugachevskii, M. A. (2012) Morphology and phase changes in laser-ablated TiO2 particles during thermal annealing. Tech. Phys. Lett. 38(4): 328–331.
  • Hoffmann, M. R., and Martin, S. T., Choi, W., Detlef, W. Bahnemann (1995) Environmental applications of semiconductor photocatalysis. Chem. Rev. 95: 69–96.
  • Pugachevskii, M. A. (2013) Ultraviolet absorption spectrum of laser-ablated titanium dioxide nanoparticles. Tech. Phys. Lett. 39(1): 36–38.
  • ZaĬnullina, V. M., Zhukov, V. P., and Krasil'nikov, V. N., M. Yu. YanchenkoL, Yu. BuldakovaE, V. Polyakov (2013) Electronic structure and the optical and photocatalytic properties of anatase doped with vanadium and carbon. Phys. Solid State 52(2): 271–280.
  • Toyoda, T., Taira, R., Shen, Q., and Ohmori, M. (2011) Photoacoustic spectra of mixed TiO2 ultrafine powders with rutile and anatase structures. Japanese J. Appl. Phys. Part 1 405 B: 3587–3590.
  • Vázquez-Cuchillo, O., Cruz-López, A., Bautista-Carrillo, L. M., Bautista-Hernández, A., Martínez, L. M. T., and Lee, S. W. (2010) Synthesis of TiO2 using different hydrolysis catalysts and doped with Zn for efficient degradation of aqueous phase pollutants under UV light. Res. Chem. Intermed. 36(1): 103–113.
  • Yalcın, Y., Kılıc, M., and Cınar, Z. (2010) Fe+3-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity. Appl. Catal. B: Environ. 99(3–4): 469–477.
  • Zhang, Y. G., and Wang, Y. X. (2011) Calculations show improved photoelectrochemical performance for N, Ce, and Ce + N - doped anatase TiO2. J. Appl. Phys. 110(3): 033519–033525.
  • Sánchez-Muñoz, S., Pérez-Quintanilla, D., and Góomez-Ruiz, S. (2013) Synthesis and photocatalytic applications of nano-sized zinc-doped mesoporous titanium oxide. Mater. Res. Bull. 48: 205–255.
  • Scarisoreanua, M., Alexandrescua, R., Morjana, I., Birjegaa, R., Luculescua, C., Popovicia, E., Dutua, E., Vasileb, E., Danciuc, V., and Herlin-Boime, N. (2013) Structural evolution and optical properties of C-coated TiO2 nanoparticles prepared by laser pyrolysis. Appl. Surf. Sci. 278: 295–300.
  • Kumar, D. A., Xavier, J. A., Shyla, J. M., and Xavier, P. F. (2013) Synthesis and structural, optical and electrical properties of TiO2/SiO2 nanocomposites. J. Mater. Sci. 48(10): 3700–3707.
  • Giannakas, A. E., Seristatidou, E., Deligiannakis, Y., and Konstantinou, I. (2013) Photocatalytic activity of N-doped and N-F co-doped TiO2 and reduction of chromium (VI) in aqueous solution: An EPR study. Appl. Catal. B: Environ. 132: 460–468.
  • Lock, N., Jensen, E. M. L., Mi, J., Mamakhel, A., Norén, K., Qingbo, M., and Iversen, B. B. (2013) Copper doped TiO2 nanoparticles characterized by X-ray absorption spectroscopy, total scattering, and powder diffraction-a benchmark structure-property study. Dalton Transactions 42(26): 9555–9564.
  • Li, Z. B., and Wang, X. (2013) First-principle study of electronic structure and enhanced visible-light photocatalytic activity of anatase TiO2 through C and F codoping. Adv. Mater. Rese. 746: 400–405.
  • Tomar, L. J., and Chakrabarty, B. S. (2013) Synthesis, structural and optical properties of TiO2-ZrO2 nanocomposite by hydrothermal method. Adv. Mater. Lett. 4(1): 64–67.
  • Lu, D., Fang, P., Liu, Y., Liu, Z., Liu, X., Gao, Y., Chen, F., and Niu, N. (2014) A facile one-pot synthesis of gadolinium doped TiO2-based nanosheets with efficient visible light-driven photocatalytic performance. J. Nanopart. Res. 16: 2636–2648.
  • Pasang, T., Namratha, K., Parvin, T., Ranganathaiah, C., and Byrappa, K. (2015) Tuning of band gap in TiO2 and ZnO nanoparticles by selective doping for photocatalytic applications. Mater. Res. Innovations 19(1): 73–80.
  • Banisharifa, A., Khodadadia, A. A., Mortazavia, Y., Firoozb, A. A., Beheshtianb, J., Agaha, S., and Menbari, S. (2015) Highly active Fe2O3-doped TiO2 photocatalyst for degradation of trichloroethylene in air under UV and visible light irradiation: Experimental and computational studies. Appl. Catal. B: Environ. 165: 209–221.
  • Nishanthi, S. T., Sundarakannan, B., Subramanian, E., and Pathinettam Padiyan, D. (2015) Enhancement in hydrogen generation using bamboo like TiO2 nanotubes fabricated by a modified two-step anodization technique. Renewable Energy 77: 300–307.
  • Taleshi, F., and Pahlavan, A. (2014) Effect of rapid cooling time on optical absorption and band gap energy of TiO2 nanoparticles. J. Mater. Sci.: Mater. Electron. 25(6): 2450–2455.
  • Chou, T. P., Zhang, Q., Fryxell, G. E., and Cao, G. (2007) Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Adv. Mater. 19(18): 2588–2594.
  • Sambandam, B., Surenjan, A., Philip, L., and Pradeep, T. (2015) Rapid synthesis of C-TiO2: Tuning the shape from spherical to rice grain morphology for visible light photocatalytic application. ACS Sustainable Chem. Eng. 3(7): 1321–1329.
  • Bamba, D., Coulibaly, M., Fort, C. I., Coteţ, C. L., Pap, Z., Vajda, K., Zoro, E. G., Yao, N. A., Danciu, V., and Robert, D. (2015) Synthesis and characterization of TiO2/C nanomaterials: Applications in water treatment. Phys. Status Solidi (B) Basic Res. 252(11): 2503–2511.
  • Xiong, L., Xu, Y., Lei, P., Tao, T., and Xiao, X. (2014) Synthesis and characterization of TiO2/C by a simple thermal decomposition method. Solid State Ionics 268(PB): 265–267.
  • Shao, X., Zhang, R., Lu, W.-C., and Lu, C. (2013) Preparation of TiO2-C nano-composite materials by sol-gel method. Rengong Jingti Xuebao/J. Synth. Cryst. 42(2): 305–309+315.
  • Remnev, G. E., Furman, E. G., Pushkarev, A. I., Karpuzov, S. B., Kondrat'ev, N. A., and Goncharov, D. V. (2004) A high-current pulsed accelerator with a matching transformer. Instrum. Exp. Tech. 47(3): 394–398.
  • Isakova, Y. I., Pushkarev, A. I. and Kholodnaya, G. E. (2011) A differential high-voltage divider. Instrum. Exp. Tech. 54(2): 183–186.
  • Kholodnaya, G., Ponomarev, D., Sazonov, R., and Remnev, G. (2014) Characteristics of pulsed plasma-chemical synthesis of silicon dioxide nanoparticles. Radiat. Phys. Chem. 103: 114–118.
  • Mikhailov, M. M., Yuryev, S. A., Remnev, G. E., Sazonov, R. V., Kholodnaya, G. E., and Ponomarev, D. V. (2014) Effect of temperature on radiation resistance of TiO2 powders during heating and modification by SiO2 nanoparticles. Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interact. Mater. At. 336: 96–101.
  • Kabyshev, A. V., Konusov, F. V., and Remnev, G. E. (2011) Optical properties of GaAs films deposited via pulsed ion ablation. J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5(2): 228–235.
  • O'Leary, S. K, Zukotynski, S., and Perz, J. M. (1995) Optical absorption in amorphous semiconductors. Phys. Rev.B 52(11): 7795–7797.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.