122
Views
11
CrossRef citations to date
0
Altmetric
Articles

Calculated relative populations of Sm@C82 isomers

, , &
Pages 233-238 | Received 14 Aug 2017, Accepted 28 Aug 2017, Published online: 05 Apr 2018

References

  • Okazaki, T.; Lian, Y. F.; Gu, Z. N.; Suenaga, K.; Shinohara, H. Isolation and Spectroscopic Characterization of Sm-containing Metallofullerenes. Chem. Phys. Lett. 2000, 320, 435–440.
  • Liu, J.; Shi, Z.; Gu, Z. The Cage and Metal Effect: Spectroscopy and Electrochemical Survey of a Series of Sm-containing High Metallofullerenes. Chem. Asian J. 2009, 4, 1703–1711.
  • Yang, H.; Jin, H.; Wang, X.; Liu, Z.; Yu, M.; Zhao, F.; Mercado, B. Q.; Olmstead, M. M.; Balch, A. L. X-ray Crystallographic Characterization of New Soluble Endohedral Fullerenes Utilizing the Popular C82 Bucky Cage. Isolation and Structural Characterization of Sm@C3v(7)-C82, Sm@Cs(6)-C82, and Sm@C2(5)-C82. J. Am. Chem. Soc. 2012, 134, 14127–14136.
  • Hu, Z.; Hao, Y.; Slanina, Z.; Gu, Z.; Shi, Z.; Uhlík, F.; Zhao, Y.; Feng, L. Popular C82 Fullerene Cage Encapsulating a Divalent Metal Ion Sm2 +: Structure and Electrochemistry. Inorg. Chem. 2015, 54, 2103–2108.
  • Lu, X.; Slanina, Z.; Akasaka, T.; Tsuchiya, T.; Mizorogi, N.; Nagase, S. Yb@C-2n (n=40, 41, 42): New Fullerene Allotropes with Unexplored Electrochemical Properties. J. Am. Chem. Soc. 2010, 132, 5896–5905.
  • Lu, X.; Lian, Y.; Beavers, C. M.; Mizorogi, N.; Slanina, Z.; Nagase, S.; Akasaka, T. Crystallographic X-ray Analyses of Yb@C2v(3)-C80 Reveal a Feasible Rule that Governs the Location of a Rare Earth Metal Inside a Medium-sized Fullerene. J. Am. Chem. Soc. 2011, 133, 10772–10775.
  • Suzuki, M.; Slanina, Z.; Mizorogi, N.; Lu, X.; Nagase, S.; Olmstead, M. M.; Balch, A. L.; Akasaka, T. Single-crystal X-ray Diffraction Study of three Yb@C-82 Isomers Cocrystallized with Ni-II(octaethylporphyrin). J. Am. Chem. Soc. 2012, 134, 18772–18778.
  • Slanina, Z.; Uhlík, F.; Lee, S.-L.; Suzuki, M.; Lu, X.; Mizorogi, N.; Nagase, S.; Akasaka, T. Calculated Temperature Development of the Relative Stabilities of Yb@C82 Isomers. Fulleren. Nanotub. Carb. Nanostruct. 2014, 22, 147–154.
  • Xu, Z. D.; Nakane, T.; Shinohara, H. Production and Isolation of Ca@C-82 (I-IV) and Ca@C-84 (I,II) Metallofullerenes. J. Am. Chem. Soc. 1996, 118, 11309–11310.
  • Kobayashi, K.; Nagase, S. Structures of the Ca@C-82 isomers: A Theoretical Prediction. Chem. Phys. Lett. 1997, 274, 226–230.
  • Kodama, T.; Fujii, R.; Miyake, Y.; Sakaguchi, K.; Nishikawa, H.; Ikemoto, I.; Kikuchi, K.; Achiba, Y. Structural Study of Four Ca@C-82 Isomers by C-13 NMR Spectroscopy. Chem. Phys. Lett. 2003, 377, 197–200.
  • Slanina, Z.; Kobayashi, K.; Nagase, S. Ca@C82 Isomers: Computed Temperature Dependency of Relative Concentrations. J. Chem. Phys. 2004, 3397–3400.
  • Chai, Y.; Guo, T.; Jin, C.; Haufler, R. E.; Chibante, L. P. F.; Fure, J.; Wang, L.; Alford, J. M.; Smalley, R. E. Fullerenes with Metals Inside. J. Phys. Chem. 1991, 95, 7564–7568.
  • Johnson, R. D.; de Vries, M. S.; Salem, J.; Bethune, D. S.; Yannoni, C. S. Electron Paramagnetic Resonance Studies of Lanthanum-containing C82. Nature 1992, 355, 239–240.
  • Bandow, S.; Kitagawa, H.; Mitani, T.; Inokuchi, H.; Saito, Y.; Yamaguchi, H.; Hayashi, N.; Sato, H.; Shinohara, H. Anaerobic Sampling and Characterization of Lanthanofullerenes: Extraction of LaC76 and Other LaC2n. J. Phys. Chem. 1992, 96, 9609–9612.
  • Kikuchi, K.; Suzuki, S.; Nakao, Y.; Nakahara, N.; Wakabayashi, T.; Shiromaru, H.; Saito, K.; Ikemoto, I.; Achiba, Y. Isolation and Characterization of the Metallofullerene LaC82. Chem. Phys. Lett. 1993, 216, 67–71.
  • Yamamoto, K.; Funasaka, H.; Takahasi, T.; Akasaka, T.; Suzuki, T.; Maruyama, Y. Isolation and Characterization of an ESR-Active La@C82 Isomer. J. Phys. Chem. 1994, 98, 12831–12833.
  • Nishibori, E.; Takata, M.; Sakata, M.; Tanaka, H.; Hasegawa, M.; Shinohara, H. Giant Motion of La Atom Inside C82 Cage. Chem. Phys. Lett. 2000, 330, 497–502.
  • Akasaka, T.; Wakahara, T.; Nagase, S.; Kobayashi, K.; Waelchli, M.; Yamamoto, K.; Kondo, M.; Shirakura, S.; Okubo, S.; Maeda, Y.; Kato, T.; Kako, M.; Nakadaira, Y.; Nagahata, R.; Gao, X.; van Caemelbecke, E.; Kadish, K. M. La@C82 Anion. An Unusually Stable Metallofullerene. J. Am. Chem. Soc. 2000, 122, 9316–9317.
  • Akasaka, T.; Wakahara, T.; Nagase, S.; Kobayashi, K.; Waelchli, M.; Yamamoto, K.; Kondo, M.; Shirakura, S.; Maeda, Y.; Kato, T.; Kako, M.; Nakadaira, Y.; Gao, X.; van Caemelbecke, E.; Kadish, K. M. Structural Determination of the La@C82 Isomer. J. Phys. Chem. B 2001, 105, 2971–2974.
  • Nagase, S.; Kobayashi, K.; Kato, T.; Achiba, Y. A Theoretical Approach to C82 and LaC82. Chem. Phys. Lett. 1993, 201, 475–480.
  • Nagase, S.; Kobayashi, K. Theoretical Study of the Lanthanide Fullerene CeC82 - Comparison with ScC82, YC82 and LaC82. Chem. Phys. Lett. 1994, 228, 106–110.
  • Andreoni, W.; Curioni, A. Freedom and Constraints of a Metal Atom Encapsulated in Fullerene Cages. Phys. Rev. Lett. 1996, 77, 834–837.
  • Kobayashi, K.; Nagase, S. Structures and Electronic States of M@C82 (M = Sc, Y, La, and Lanthanides). Chem. Phys. Lett. 1998 , 282, 325–329.
  • Kobayashi, K.; Nagase, S. Structures and Electronic Properties of Endohedral Metallofullerenes; Theory and Experiment. In Endofullerenes - A New Family of Carbon Clusters, eds. Akasaka, T.; and Nagase, S.; Kluwer Academic Publishers, Dordrecht, 2002; pp. 99–119.
  • Slanina, Z.; Kobayashi, K.; Nagase, S. Computed Temperature Development of the Relative Stabilities of La@C82 Isomers. Chem. Phys. Lett. 2004, 388, 74–78.
  • Suzuki, S.; Kawata, S.; Shiromaru, H.; Yamauchi, K.; Kikuchi, K.; Kato, T.; Achiba, Y. Isomers and Carbon-13 Hyperfine Structures of Metal-encapsulated Fullerenes M@C82 (M = Sc, Y, and La). J. Phys. Chem. 1992, 96, 7159–7161.
  • Hoinkis, M.; Yannoni, C. S.; Bethune, D. S.; Salem, J. R.; Johnson, R. D.; Crowder, M. S.; De Vries, M. S. Multiple Species of Lanthanum Fulleride (La@C82) and Yttrium Fulleride (Y@C82). Mass Spectroscopic and Solution EPR Studies. Chem. Phys. Lett. 1992, 198, 461–465.
  • Nishibori, E.; Takata, M.; Sakata, M.; Inakuma, M.; Shinohara, H. Determination of the Cage Structure of Sc@C-82 by Synchrotron Powder Diffraction. Chem. Phys. Lett. 1998, 298, 79–84.
  • Slanina, Z.; Lee, S.-L.; Kobayashi, K.; Nagase, S. AM1 Computed Thermal Effects within the nine Isolated-pentagon-rule Isomers of C82. J. Mol. Struct. (Theochem), 1995, 339, 89–93.
  • Slanina, Z.; Uhlík, F. Temperature Dependence of the Gibbs Energy Ordering of Isomers of Cl2O2. J. Phys. Chem. 1991, 95, 5432–5434.
  • Slanina, Z.; Zhao, X.; Lee, S.-L.; Ōsawa, E. C90 - Temperature Effects on Relative Stabilities of the IPR Isomers. Chem. Phys. 1997, 219, 193–200.
  • Slanina, Z.; Zhao, X.; Kurita, N.; Gotoh, H.; Uhlík, F.; Rudziński, J. M.; Lee, K. H.; Adamowicz, L. Computing the Relative Gas-phase Populations of C60 and C70: Beyond the Traditional ΔHof, 298 scale. J. Mol. Graphics Mod. 2001, 19, 216–221.
  • Slanina, Z.; Kobayashi, K.; Nagase, S. Ca@C72 IPR and non-IPR Structures: Computed Temperature Development of their Relative Concentrations. Chem. Phys. Lett. 2003, 372, 810–814.
  • Slanina, Z.; Lee, S.-L.; Adamowicz, L.; Uhlík, F.; Nagase, S. Computed Structure and Energetics of La@C60. Int. J. Quantum Chem. 2005, 104, 272.
  • Slanina, Z.; Uhlík, F.; Nagase, S. Computed Structures of Two known Yb@C74 Isomers. J. Phys. Chem. A, 2006, 110, 12860–12863.
  • Slanina, Z.; Lee, S.-L.; Uhlík, F.; Adamowicz, L.; Nagase, S. Computing Relative Stabilities of Metallofullerenes by Gibbs Energy Treatments. Theor. Chem. Acc. 2007, 117, 315–322.
  • Mercado, B. Q.; Stuart, M. A.; Mackey, M. A.; Pickens, J. E.; Confait, B. S.; Stevenson, S.; Easterling, M. L.; Valencia, R.; Rodríguez-Fortea, A.; Poblet, J. M.; Olmstead, M. M.; Balch, A. L. Sc-2(mu(2)-O) Trapped in a Fullerene cage: The Isolation and Structural Characterization of Sc-2(mu(2)-O)@C-s(6)-C-82 and the Relevance of the Thermal and Entropic Effects in Fullerene Isomer Selection. J. Am. Chem. Soc. 2010, 132, 12098–12105.
  • Mercado, B. Q.; Chen, N.; Rodríguez-Fortea, A.; Mackey, M. A.; Stevenson, S.; Echegoyen, L.; Poblet, J. M.; Olmstead, M. M.; Balch, A. L. The Shape of the Sc-2(mu(2)-S) Unit Trapped in C-82: Crystallographic, Computational, and Electrochemical Studies of the Isomers, Sc-2(mu(2)-S)@C-s(6)-C-82 and Sc-2(mu(2)-S)@C-3v(8)-C-82. J. Am. Chem. Soc. 2011, 133, 6752–6760.
  • Slanina, Z.; Uhlík, F.; Lee, S.-L.; Mizorogi, N.; Akasaka, T.; Adamowicz, L. Calculated Relative Yields for Sc2S@C82 and Y2S@C82. Theor. Chem. Acc. 2011, 130, 549–554.
  • Mulet-Gas, M.; Rodríguez-Fortea, A.; Echegoyen, L.; Poblet, J. M. Relevance of Thermal Effects in the Formation of Endohedral Metallofullerenes: The Case of Gd(3)N@C(s)(39663)-C(82) and Other Related Systems. Inorg. Chem. 2013, 52, 1954–1959.
  • Binkley, J. S.; Pople, J. A.; Hehre, W. J. Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J. Am. Chem. Soc. 1980, 102, 939–947.
  • Cao, X. Y.; Dolg, M. Segmented Contraction Scheme for Small-core Lanthanide Pseudopotential Basis Sets. J. Mol. Struct. (Theochem) 2002, 581, 139–147.
  • Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two new Functionals and Systematic Testing of Four M06-class Functionals and 12 other Functionals. Theor. Chem. Acc. 2008, 120, 215–241.
  • Zhao, Y.; Truhlar, D. G. Density Functionals with Broad Applicability in Chemistry. Acc. Chem. Res. 2008, 41, 157–167.
  • Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self-consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-type Basis Sets for Use in Molecular-orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261.
  • Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. Molecular Excitation Energies to High-lying Bound States from Time-dependent Density-functional Response theory: Characterization and Correction of the Time-dependent Local Density Approximation Ionization Threshold. J. Chem. Phys. 1998, 108, 4439–4449.
  • Furche, F.; Ahlrichs, R. Fullerene C80: Are There Still More Isomers? J. Chem. Phys. 2001, 114, 10362–10367.
  • Slanina, Z.; Uhlík, F.; Lee, S.-L.; Adamowicz, L.; Nagase, S. Enhancement of Fullerene Stabilities from Excited Electronic States. Comput. Lett. 2005, 1, 304–312.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Rev. C.01, Wallingford, CT: Gaussian Inc., 2013.
  • Slanina, Z. Equilibrium Isomeric Mixtures: Potential Energy Hypersurfaces as Originators of the Description of the Overall thermodynamics and Kinetics. Int. Rev. Phys. Chem. 1987, 6, 251–267.
  • Slanina, Z.; Uhlík, F.; Zerner, M. C. C5H+3 Isomeric Structures: Relative Stabilities at High Temperatures. Rev. Roum. Chim. 1991, 36, 965–974.
  • Slanina, Z.; Adamowicz, L. On Relative Stabilities of Dodecahedron-shaped and Bowl-shaped Structures of C20. Thermochim. Acta. 1992, 205, 299–306.
  • Cross, R. J.; Saunders, M. Transmutation of Fullerenes. J. Am. Chem. Soc. 2005, 127, 3044–3047.
  • Slanina, Z.; Adamowicz, L.; Kobayashi, K.; Nagase, S. Gibbs Energy-based Treatment of Metallofullerenes: Ca@C72, Ca@C74, Ca@C82, and La@C82. Mol. Simul. 2005, 31, 71–77.
  • Akasaka, T.; Nagase, S.; Kobayashi, K.; Walchli, M.; Yamamoto, K.; Funasaka, H.; Kako, M.; Hoshino, T.; Erata, T. 13C and 139La NMR Studies of La2@C80: First Evidence for Circular Motion of Metal Atoms in Endohedral Dimetallofullerenes. Angew. Chem., Intl. Ed. Engl. 1997, 36, 1643–1645.
  • Kobayashi, K.; Nagase, S.; Maeda, Y.; Wakahara, T.; Akasaka, T. La2@C80: Is the Circular Motion of Two La Atoms Controllable by Exohedral Addition? Chem. Phys. Lett. 2003, 374, 562–566.
  • Slanina, Z. Contemporary Theory of Chemical Isomerism. Academia and D. Reidel Publ. Comp., Prague and Dordrecht, 1986, pp. 21–23.
  • Slanina, Z.; Uhlík, F.; Feng, L.; Adamowicz, L. Evaluation of the Relative Stabilities of Two non-IPR Isomers of Sm@C76. Fulleren. Nanotub. Carb. Nanostruct. 2016, 24, 339–344.
  • Kobayashi, K.; Nagase, S. Bonding Features in Endohedral Metallofullerenes. Topological Analysis of the Electron Density Distribution. Chem. Phys. Lett. 1999, 302, 312–316.
  • Popov, A. A.; Dunsch, L. Bonding in Endohedral Metallofullerenes as Studied by Quantum theory of Atoms in Molecules. Chem. Eur. J. 2009, 15, 9707–9729.
  • Slanina, Z.; Uhlík, F.; Lee, S.-L.; Adamowicz, L.; Akasaka, T.; Nagase, S. Computed Stabilities in Metallofullerene Series: Al@C82, Sc@C82, Y@C82, and La@C82. Int. J. Quant. Chem. 2011, 111, 2712–2718.
  • Slanina, Z.; Uhlík, F.; Lee, S.-L.; Adamowicz, L.; Akasaka, T.; Nagase, S. Calculations of Metallofullerene Yields. J. Comput. Theor. Nanosci. 2011, 8, 2233–2239.
  • Rodríguez-Fortea, A.; Balch, A. L.; Poblet, J. M. Endohedral Metallofullerenes: A Unique Host-guest Association. Chem. Soc. Rev. 2011, 40, 3551–3563.
  • Yang, S.; Liu, F.; Chen, C.; Jiao, M.; Wei, T. Fullerenes Encaging Metal Clusters - Clusterfullerenes. 2011, Chem. Commun., 47, 11822–11839.
  • Slanina, Z.; Uhlík, F.; Feng, L.; Adamowicz, L. Sc2O@C78: Calculations of the Yield Ratio for Two Observed Isomers. Fulleren. Nanotub. Carb. Nanostruct. 2017, 25, 124–127.
  • Slanina, Z.; Uhlík, F.; Adamowicz, L.; Akasaka, T.; Nagase, S.; Lu, X. Stability Issues in Computational Screening of Carbon Nanostructures: Illustrations on La Endohedrals. Mol. Simul. 2017, 43, 1472–1479.
  • Slanina, Z.; Uhlík, F.; Nagase, S.; Akasaka, T.; Adamowicz, L.; Lu, X. A Computational Characterization of CO@C60. Fulleren. Nanotub. Carb. Nanostruct. 2017, 25, 624–629.
  • The Mathematics and Topology of Fullerenes. Cataldo, F., Graovac, A.; Ori, O., eds., Eds. Springer Science+Business Media B.V., Dordrecht, 2011.
  • Díaz-Tendero, S.; Alcamí, M.; Martín, F. Fullerene C50, Sphericity Takes Over, not Strain. Chem. Phys. Lett. 2005, 407, 153–158.
  • Vukicevic, D.; Cataldo, F.; Ori, O.; Graovac, A. Topological Efficiency of C66 Fullerene. Chem. Phys. Lett. 2011, 501, 442–445.
  • Slanina, Z.; Chao, M.-C.; Lee, S.-L.; Gutman, I. On Applicability of the Wiener Index to Estimate Relative Stabilities of the Higher-fullerene IPR Isomers. J. Serb. Chem. Soc. 1997, 62, 211–217.
  • Slanina, Z.; Uhlík, F.; Lee, S.-L.; Ōsawa, E. Geometrical and Thermodynamic Approaches to the Relative Stabilities of Fullerene Isomers. MATCH Commun. Math. Comput. Chem. 2001; 2002, 44, 335–348; 45, 173.
  • Ori, O.; Cataldo, F.; Graovac, A. Topological Ranking of C28 Fullerenes Reactivity. Fulleren. Nanotub. Carb. Nanostruct. 2009, 17, 308–323.
  • Cataldo, F.; Ori, O.; Iglesias-Groth, S. Topological Lattice Descriptors of Graphene Sheets with Fullerene-like Nanostructures. Mol. Simul. 2010, 36, 341–353.
  • Rodríguez-Fortea, A.; Alegret, N.; Balch, A. L.; Poblet, J. M. The Maximum Pentagon Separation Rule Provides a Guideline for the Structures of Endohedral Metallofullerenes. Nature Chem. 2010, 2, 955–961.
  • Rodríguez-Fortea, A.; Poblet, J. M. Maximum Aromaticity or Maximum Pentagon Separation; Which is the Origin Behind the Stability of Endohedral Metallofullerenes? Faraday Discuss. 2014, 173, 201–213.
  • Slanina, Z.; Zhao, X.; Uhlík, F.; Ozawa, M.; Ōsawa, E. Computational Modelling of the Metal and other Elemental Catalysis in the Stone-Wales Fullerene Rearrangements. J. Organomet. Chem. 2000, 599, 57–61.
  • Lian, Y.; Shi, Z.; Zhou, X.; Gu, Z. Different Extraction Behaviors Between Divalent and Trivalent Endohedral Metallofullerenes. Chem. Mater. 2004, 16, 1704–1714.
  • Maeda, Y.; Tsuchiya, T.; Kikuchi, T.; Nikawa, H.; Yang, T.; Zhao, X.; Slanina, Z.; Suzuki, M.; Yamada, M.; Lian, Y.; Nagase, S.; Lu, X.; Akasaka, T. Effective Derivatization and Extraction of Insoluble Missing Lanthanum Metallofullerenes La@C2n (n=36-38) with Iodobenzene. Carbon. 2016, 98, 67–73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.