114
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A facile approach to fabricate few-layer chemically modified and reduced graphene oxide sheets: Combination of stitching, reduction and functionaliztion

, , &
Pages 30-37 | Received 18 Sep 2017, Accepted 26 Oct 2017, Published online: 04 Jan 2018

References

  • Novoselov, K.-S.; Geim, A.-K.; Morozov, S.-V.; Jiang, D.; Zhang, Y.; Dubonos, S.-V.; Grigorieva, I.-V.; Firsov, A.-A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004, 306, 666–669. doi:10.1126/science.1102896.
  • Geim, A.-K.; Novoselov, K.-S. The rise of graphene. Nat Mater. 2007, 6, 183–191. doi:10.1038/nmat1849.
  • Geim, A.-K. Graphene: Status and Prospects. Science. 2009, 324, 1530–1534. doi:10.1126/science.1158877.
  • Lee, C.; Wei, X.; Kysar, J.-W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008, 321, 385–388. doi:10.1126/science.1157996.
  • Balandin, A.-A.; Ghosh, S.; Bao, W.-Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.-N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. doi:10.1021/nl0731872.
  • Allen, M.-J.; Tung, V.-C.; Kaner, R.-B. Honeycomb Carbon: A Review of Graphene. Chemical Reviews. 2009, 110, 132–145. doi:10.1021/cr900070d.
  • Pei, S.; Zhao, J.; Du, J.; Ren, W.; Cheng, H.-M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon. 2010, 48, 4466–4474. doi:10.1016/j.carbon.2010.08.006.
  • Kovtyukhova, N.-I.; Ollivier, P.-J.; Martin, B.-R.; Mallouk, T.-E.; Chizhik, S.-A.; Buzaneva, E.-V.; Gorchinskiy, A.-D. Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chemistry of Materials. 1999, 11, 771–778. doi:10.1021/cm981085u.
  • Yang, K.; Liang, S.; Zou, L.; Huang, L.; Park, C.; Zhu, L.; Fang, J.; Fu, Q.; Wang, H. Intercalating Oleylamines in Graphite Oxide. Langmuir. 2012, 28, 2904–2908. doi:10.1021/la203769p.
  • Bourlinos, A.-B.; Gournis, D.; Petridis, D.; Szabó, T.; Szeri, A.; Dékány, I. Graphite Oxide:  Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids. Langmuir. 2003, 19, 6050–6055. doi:10.1021/la026525h.
  • Kim, N.-H.; Kuila, T.; Lee, J.-H. Simultaneous reduction, functionalization and stitching of graphene oxide with ethylenediamine for composites application. Journal of Materials Chemistry A. 2013, 1, 1349–1358. doi:10.1039/C2TA00853J.
  • Arachchige, I.-U.; Brock, S.-L. Sol−Gel Assembly of CdSe Nanoparticles to Form Porous Aerogel Networks. Journal of the American Chemical Society. 2006, 128, 7964–7971. doi:10.1021/ja061561e.
  • Nardecchia, S.; Carriazo, D.; Ferrer, M.-L.; Gutierrez, M.-C.; del Monte, F. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chemical Society Reviews. 2013, 42, 794–830. doi:10.1039/C2CS35353A.
  • Stankovich, S.; Dikin, D.-A.; Dommett, G.-H.-B.; Kohlhaas, K.-M.; Zimney, E.-J.; Stach, E.-A.; Piner, R.-D.; Nguyen, S.-T.; Ruoff, R.-S. Graphene-based composite materials. Nature. 2006, 442, 282–286. doi:10.1038/nature04969.
  • Romanchuk, A.-Y.; Slesarev, A.-S.; Kalmykov, S.-N.; Kosynkin, D.-V.; Tour, J.-M. Graphene oxide for effective radionuclide removal. Physical Chemistry Chemical Physics. 2013, 15, 2321–2327. doi:10.1039/c2cp44593j.
  • Kaminska, I.; Das, M.-R.; Coffinier, Y.; Niedziolka-Jonsson, J.; Sobczak, J.; Woisel, P.; Lyskawa, J.; Opallo, M.; Boukherroub, R.; Szunerits, S. Reduction and Functionalization of Graphene Oxide Sheets Using Biomimetic Dopamine Derivatives in One Step. ACS Applied Materials & Interfaces. 2012, 4, 1016–1020. doi:10.1021/am201664n.
  • Ang, P.-K.; Wang, S.; Bao, Q.; Thong, J.-T.-L.; Loh, K.-P. High-Throughput Synthesis of Graphene by Intercalation−Exfoliation of Graphite Oxide and Study of Ionic Screening in Graphene Transistor. ACS Nano. 2009, 3, 3587–3594. doi:10.1021/nn901111s.
  • Chen, Y.; Zhang, X.; Yu, P.; Ma, Y. Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. Chemical Communications. 2009, 30, 4527–4529. doi:10.1039/b907723e.
  • Stankovich, S.; Dikin, D.-A.; Piner, R.-D.; Kohlhaas, K.-A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.-T.; Ruoff, R.-S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007, 45, 1558–1565. doi:10.1016/j.carbon.2007.02.034.
  • Shin, H.-J.; Kim, K.-K.; Benayad, A.; Yoon, S.-M.; Park, H.-K.; Jung, I.-S.; Jin, M.-H.; Jeong, H.-K.; Kim, J.-M.; Choi, J.-Y.; Lee, Y.-H. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance. Advanced Functional Materials. 2009, 19, 1987–1992. doi:10.1002/adfm.200900167.
  • Wang, H.; Robinson, J.-T.; Li, X.; Dai, H. Solvothermal Reduction of Chemically Exfoliated Graphene Sheets. Journal of the American Chemical Society. 2009, 131, 9910–9911. doi:10.1021/ja904251p.
  • He, Y.-L.; Li, J.-H.; Li, L.-F.; Chen, J.-B.; Li, J.-Y. The synergy reduction and self-assembly of graphene oxide via gamma-ray irradiation in an ethanediamine aqueous solution. Nuclear Science and Techniques. 2016, 27, 1–8. doi:10.1007/s41365-016-0068-8.
  • He, Y.; Li, J.; Luo, K.; Li, L.; Chen, J.; Li, J. Engineering Reduced Graphene Oxide Aerogel Produced by Effective γ-ray Radiation-Induced Self-Assembly and Its Application for Continuous Oil–Water Separation. Industrial & Engineering Chemistry Research. 2016, 55, 3775–3781. doi:10.1021/acs.iecr.6b00073.
  • He, Y.; Li, J.; Li, L.; Li, J. Gamma-ray irradiation-induced reduction and self-assembly of graphene oxide into three-dimensional graphene aerogel. Materials Letters. 2016, 177, 76–79. doi:10.1016/j.matlet.2016.04.187.
  • Luo, K.; Li, J.; Li, L.; Li, J. A facile method for preparing 3D graphene/Ag aerogel via gamma-ray irradiation, Fullerenes. Nanotubes and Carbon Nanostructures. 2016, 24, 720–724. doi:10.1080/1536383X.2016.1224855.
  • Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation. Advanced Materials. 2008, 20, 4490–4493. doi:10.1002/adma.200801306.
  • Che, J.; Shen, L.; Xiao, Y. A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion. Journal of Materials Chemistry. 2010, 20, 1722–1727. doi:10.1039/b922667b.
  • Xu, L.-Q.; Yang, W.-J.; Neoh, K.-G.; Kang, E.-T.; Fu, G.-D. Dopamine-Induced Reduction and Functionalization of Graphene Oxide Nanosheets. Macromolecules. 2010, 43, 8336–8339. doi:10.1021/ma101526k.
  • Li, W.; Tang, X.-Z.; Zhang, H.-B.; Jiang, Z.-G.; Yu, Z.-Z.; Du, X.-S.; Mai, Y.-W. Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon. 2011, 49, 4724–4730. doi:10.1016/j.carbon.2011.06.077.
  • Ma, H.-L.; Zhang, H.-B.; Hu, Q.-H.; Li, W.-J.; Jiang, Z.-G.; Yu, Z.-Z.; Dasari, A. Functionalization and Reduction of Graphene Oxide with p-Phenylene Diamine for Electrically Conductive and Thermally Stable Polystyrene Composites. ACS Applied Materials & Interfaces. 2012, 4, 1948–1953. doi:10.1021/am201654b.
  • Schuffenhauer, C.; Popovitz-Biro, R.; Tenne, R. Synthesis of NbS2 nanoparticles with (nested) fullerene-like structure (IF). Journal of Materials Chemistry. 2002, 12, 1587–1591. doi:10.1039/b110240k.
  • Aragon.F, J.-C.-R.; MacEwan, D.-M.-C. β-type interlamellar sorption complexes. Nature. 1959, 183, 740.
  • Nethravathi, C.; Rajamathi, M. Delamination, colloidal dispersion and reassembly of alkylamine intercalated graphite oxide in alcohols. Carbon. 2006, 44, 2635–2641. doi:10.1016/j.carbon.2006.04.018.
  • Herrera-Alonso, M.; Abdala, A.-A.; McAllister, M.-J.; Aksay, I.-A.; Prud'homme, R.-K. Intercalation and Stitching of Graphite Oxide with Diaminoalkanes. Langmuir. 2007, 23, 10644–10649. doi:10.1021/la0633839.
  • Zhang, B.; Li, L.; Wang, Z.; Xie, S.; Zhang, Y.; Shen, Y.; Yu, M.; Deng, B.; Huang, Q.; Fan, C.; Li, J. Radiation induced reduction: an effective and clean route to synthesize functionalized graphene. Journal of Materials Chemistry. 2012, 22, 7775–7781. doi:10.1039/c2jm16722k.
  • Zhang, Y.; Ma, H.-L.; Zhang, Q.; Peng, J.; Li, J.; Zhai, M.; Yu, Z.-Z. Facile synthesis of well-dispersed graphene by [gamma]-ray induced reduction of graphene oxide. Journal of Materials Chemistry. 2012, 22, 13064–13069. doi:10.1039/c2jm32231e.
  • Zhou, X.; Zhang, J.; Wu, H.; Yang, H.; Zhang, J.; Guo, S. Reducing Graphene Oxide via Hydroxylamine: A Simple and Efficient Route to Graphene. The Journal of Physical Chemistry C. 2011, 115, 11957–11961. doi:10.1021/jp202575j.
  • Lee, C.-Y.; Gamble, L.; Grainger, D.; Castner, D. Mixed DNA/oligo (ethylene glycol) functionalized gold surfaces improve DNA hybridization in complex media. Biointerphases. 2006, 1, 82–92. doi:10.1116/1.2219110.
  • Patil, A.-J.; Vickery, J.-L.; Scott, T.-B.; Mann, S. Aqueous Stabilization and Self-Assembly of Graphene Sheets into Layered Bio-Nanocomposites using DNA. Advanced Materials. 2009, 21, 3159–3164. doi:10.1002/adma.200803633.
  • Ramanathan, T.; Fisher, F.-T.; Ruoff, R.-S.; Brinson, L.-C. Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems. Chemistry of Materials. 2005, 17, 1290–1295. doi:10.1021/cm048357f.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.