185
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Influence of catalyst particles on multi-walled carbon nanotubes morphology and structure

, , &
Pages 315-323 | Received 12 Dec 2017, Accepted 18 Jan 2018, Published online: 05 Apr 2018

References

  • Kumar, M.; Ando, Y. Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production. J. Nanosci. Nanotechnol. 2010, 10, 3739–3758. DOI: 10.1166/jnn.2010.2939.
  • Vasconcelos da Silva, L.; Pezzin, S. H.; Cerqueira Rezende, M.; Campos Amico, S. Glass fiber/carbon nanotubes/epoxy three-component composites as radar absorbing materials. Polym. Compos. 2016, 37, 2277–2284. DOI: 10.1002/pc.23405.
  • Boroujeni, A. Y.; Tehrani, M.; Nelson, A. J.; Al-Haik, M. Hybrid carbon nanotube-carbon fiber composites with improved in-plane mechanical properties. Compos. Part B Eng. 2014, 66, 475–483. DOI: 10.1016/j.compositesb.2014.06.010.
  • Avouris, P. Molecular Electronics with Carbon Nanotubes. Acc. Chem. Res. 2002, 35, 1026–1034. DOI: 10.1021/ar010152e.
  • Żelechowska, K.; Trawiński, B.; Dramińska, S.; Majdecka, D.; Bilewicz, R.; Kusz, B. Oxygen biosensor based on carbon nanotubes directly grown on graphitic substrate. Sens. Actuators, B Chem. 2017, 240, 1308–1313. DOI: 10.1016/j.snb.2016.09.081.
  • Xie, Y.; Lu, L.; Tang, Y.; Zhang, F.; Shen, C.; Zang, X.; Ding, X.; Cai, W.; Lin, L. Hierarchically nanostructured carbon fiber-nickel-carbon nanotubes for high-performance supercapacitor electrodes. Mater. Lett. 2016, 186, 70–73. DOI: 10.1016/j.matlet.2016.09.087.
  • Yu, B.; Tan, L.; Zheng, R.; Tan, H.; Zheng, L. Targeted delivery and controlled release of Paclitaxel for the treatment of lung cancer using single-walled carbon nanotubes. Mater. Sci. Eng., C 2016, 68, 579–584. DOI: 10.1016/j.msec.2016.06.025.
  • Pilatos, G.; Samouhos, M.; Angelopoulos, P.; Taxiarchou, M.; Veziri, C.; Hutcheon, R.; Tsakiridis, P.; Kontos, A. G. Carbon nanotubes growth on expanded perlite particles via CVD method: The influence of the substrate morphology. Chem. Eng. J. 2016, 291, 106–114. DOI: 10.1016/j.cej.2016.01.112.
  • Zhu, J.; Yudasaka, M.; Iijima, S. A catalytic chemical vapor deposition synthesis of double-walled carbon nanotubes over metal catalysts supported on a mesoporous material. Chem. Phys. Lett. 2003, 380, 496–502. DOI: 10.1016/j.cplett.2003.09.049.
  • Dai, H. Carbon nanotubes: Synthesis, integration, and properties. Acc. Chem. Res. 2002, 35, 1035–1044. DOI: 10.1021/ar0101640.
  • Youn, H.; Kim, J.; Ahn, W. MWCNT synthesis over Fe-BTC as a catalyst / carbon source via CVD X 50 k X 10 k Fe nanoparticle. Mater. Lett. 2011, 65, 3055–3057. DOI: 10.1016/j.matlet.2011.06.081.
  • Sciortino, L.; Alessi, A.; Messina, F.; Buscarino, G.; Gelardi, F. M. Structure of the FeBTC metal-organic framework: A model based on the local environment study. J. Phys. Chem. C 2015, 119, 7826–7830. DOI: 10.1021/acs.jpcc.5b01336.
  • De Greef, N.; Zhang, L.; Magrez, A.; Forró, L.; Locquet, J. P.; Verpoest, I.; Seo, J. W. Direct growth of carbon nanotubes on carbon fibers: Effect of the CVD parameters on the degradation of mechanical properties of carbon fibers. Diamond Relat. Mater. 2015, 51, 39–48. DOI: 10.1016/j.diamond.2014.11.002.
  • Shokry, S. A.; Morsi, A. K. El; Sorogy, H. E. El. Study of the productivity of MWCNT over Fe and Fe – Co catalysts supported on SiO 2, Al 2 O 3 and MgO. Egypt. J. Pet. 2014, 23, 183–189. DOI: 10.1016/j.ejpe.2014.05.005.
  • Zhou, W.; Bai, X.; Wang, E.; Xie, S. Synthesis, structure, and properties of single-walled carbon nanotubes. Adv. Mater. 2009, 21, 4565–4583. DOI: 10.1002/adma.200901071.
  • Zhang, W.; Li, X.; Liu, T.; Li, F.; Shen, W. Colloids and Surfaces A : Physicochemical and Engineering Aspects Competitive reduction of nitrate and iron oxides by Shewanella putrefaciens 200 under anoxic conditions. Colloids Surf., A Physicochem. Eng. Asp. 2014, 445, 97–104. DOI: 10.1016/j.colsurfa.2014.01.023.
  • Ullmann's Encyclopedia. Cobalt and Cobalt Compounds. Ullmann's Encycl. Ind. Chem. 2012, 429–464. DOI: 10.1002/14356007.a07.
  • Bond, A. M.; McLennan, E. A.; Stojanovic, R. S.; Thomas, F. G. Assessment of conditions under which the oxidation of ferrocene can be used as a standard voltammetric reference process in aqueous media. Anal. Chem. 1987, 59, 2853–2860. DOI: 10.1021/ac00151a007.
  • Radhi, M. M. Electrochemical characterization of the redox couple of Fe(III)/Fe(II) mediated by grafted polymer reference electrode (GPRE). Res. Chem. Intermed. 2014, 40, 1975–1987. DOI: 10.1007/s11164-013-1095-2.
  • Vogel, A. I. Quím. Anal. Qualitativa; São Paulo: Editora Mestre Jou, 1981; vol. 5.
  • Todres, Zory V.. Organic Ion Radicals: Chemistry and Applications; Columbus, Ohio, USA: Marcel Dekker, Inc, 2003; Vol. 1.
  • Castagnola, M.; Floris, B.; Illuminati, G.; Ortaggi, G. The electron donor properties of ferrocene. The oxidation of ferrocene by carboxylic acids. J. Organomet. Chem. 1973, 60, C17–C18. DOI: 10.1016/S0022-328X(00)85420-0.
  • Tsierkezos, N. G. Cyclic voltammetric studies of ferrocene in nonaqueous solvents in the temperature range from 248.15 to 298.15 K. J. Solution Chem. 2007, 36, 289–302. DOI: 10.1007/s10953-006-9119-9.
  • Singhal, R. K.; Gangadhar, B.; Basu, H.; Manisha, V.; Naidu, G. R. K.; Reddy, A. V. R. Remediation of Malathion Contaminated Soil Using Zero Valent Iron Nano-Particles. Am. J. Anal. Chem. 2012, 3, 76–82. DOI: 10.4236/ajac.2012.31011.
  • Jourdain, V.; Bichara, C. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon 2013, 58, 2–39. DOI: 10.1016/j.carbon.2013.02.046.
  • Balbuena, P. B.; Zhao, J.; Huang, S.; Yixuan, W.; Sakulchaicharoen, N.; Resasco, D. E. Role of the catalyst in the growth of single-wall carbon nanotubes. J. Nanosci. Nanotechnol. 2006, 6, 1247–1258. DOI: 10.1166/jnn.2006.141.
  • Veronese, G. P.; Rizzoli, R.; Angelucci, R.; Cuffiani, M.; Malferrari, L.; Montanari, A.; Odorici, F. Effects of Ni catalyst-substrate interaction on carbon nanotubes growth by CVD. Phys. E Low-Dimensional Syst. Nanostructures 2007, 37, 21–25. DOI: 10.1016/j.physe.2006.09.002.
  • Kumar, M. Carbon nanotube synthesis and growth mechanism. In Nanotechnol. Perceptions 2010, 6, 7–28. DOI: 10.4024/N02KU10A.ntp.06.01.
  • Magrez, A.; Seo, J. W.; Smajda, R.; Mionić, M.; Forró, L. Catalytic CVD synthesis of carbon nanotubes: Towards high yield and low temperature growth. Mater (Basel) 2010, 3, 4871–4891. DOI: 10.3390/ma3114871.
  • Lee, G.; Kim, K. J.; Yu, W. R.; Youk, J. H. The effect of the surface roughness of carbon fibres on CNT growth by floating-catalyst chemical vapour deposition. Int. J. Nanotechnol. 2013, 10, 800. DOI: 10.1504/IJNT.2013.054219.
  • Song, W.; Gu, A.; Liang, G.; Yuan, L. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites. Appl. Surf. Sci. 2011, 257, 4069–4074. DOI: 10.1016/j.apsusc.2010.11.177.
  • Se, K.; Park, M.; Myoun, J.; Kim, J. Electrochemical properties of multi-walled carbon nanotubes treated with nitric acid for a supercapacitor electrode. Colloids Surf., A Physicochem. Eng. Asp. 2016, 506, 664–669. DOI: 10.1016/j.colsurfa.2016.07.044.
  • Dogru, I. B.; Durukan, M. B.; Turel, O.; Unalan, H. E. Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils. Prog. Nat. Sci. Mater. Int. 2016, 26, 232–236. DOI: 10.1016/j.pnsc.2016.05.011.
  • Bokobza, L.; Bruneel, J. L.; Couzi, M. Raman spectroscopy as a tool for the analysis of carbon-based materials (highly oriented pyrolitic graphite, multilayer graphene and multiwall carbon nanotubes) and of some of their elastomeric composites. Vib. Spectrosc 2014, 74, 57–63. DOI: 10.1016/j.vibspec.2014.07.009.
  • Thomsen, C.; Reich, S. Raman Scattering in Carbon Nanotubes. In Light Scatt. Solid IX; Berlin Heidelberg: Springer-Verlag, 2007; vol. 108, pp 115–232. DOI: 10.1007/978-3-540-34436-0_3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.