105
Views
5
CrossRef citations to date
0
Altmetric
Articles

Bis-phosphonated carbon nanotubes: One pot synthesis and their application as efficient adsorbent of mercury

ORCID Icon, , , , &
Pages 269-277 | Received 24 Jan 2018, Accepted 26 Jan 2018, Published online: 05 Apr 2018

References

  • Hirsch, A. Functionalization of single-walled carbon nanotubes, Angew. Chem. Int. Ed., 2002, 41, 1853–1859. DOI: 10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
  • Banerjee, S.; Hemray-Benny, T.; Wong, S. S. Covalent Surface Chemistry of Single-Walled Carbon Nanotubes, Adv. Mater., 2005, 1, 17–29. DOI: 10.1002/adma.200401340
  • Banerjee, S.; Kahn, M. G.; Wong, S. S. Rational Chemical Strategies for Carbon Nanotube Functionalization. Chem. Eur. J., 2003, 9, 18981–1908. DOI:10.1002/chem.200204618
  • Żelechowska, K.; Stolarczyk, K.; Łyp, D.; Rogalski, J.; Roberts, K. P.; Bilewicz, R.; Biernat, J. F. Aryl and N-arylamide carbon nanotubes for electrical coupling of laccase to electrodes in biofuel cells and biobatteries, Biocyb. Biomed. Eng., 2013, 33, 235–245. https://doi.org/10.1016/j.bbe.2013.09.006
  • Stolarczyk, K.; Łyp, D.; Żelechowska K.; Biernat, J. F.; Rogalski J.; Bielwicz, R. Arylated Carbon Nanotubes for Biobatteries and Biofuel Cells, Electrochim. Acta, 2012, 79, 74–81. https://doi.org/10.1016/j.electacta.2012.06.050
  • Sadowska K.; Jabłonowska E.; Stolarczyk K.; Wiser R.; Bilewicz R.; Roberts K. P.; Biernat J. F. Chemically modified carbon nanotubes: synthesis and implementation, Pol. J. Chem., 2008, 82, 1309–1312
  • Liu, L.; Qin Y.; Guo, Z-X.; Zhu, D. Reduction of solubilized multi-walled carbon nanotubes, Carbon, 2003, 41, 331–335. https://doi.org/10.1016/S0008-6223(02)00286-5
  • Gromov, A.; Dittmer, S.; Svensson J.; Nerushev, O. A.; Perez-Garcia, S. A.; Rychwalski, R.; Campbell, E. E. B. Covalent amino-functionalization of single-wall carbon nanotubes, J. Mater. Chem., 2005, 15, 3334–3339. DOI: 10.1039/B504282H
  • Ramanathan, T.; Fisher, F. T.; Ruoff, R. S.; Brinson, L. C. Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems, Chem. Mater., 2005, 17, 1290–1295. DOI: 10.1021/cm048357f
  • Azamian, B. R.; Coleman, K. S.; Davis, J. J.; Hanson, N.; Green, ML. Directly observed covalent coupling of quantum dots to single-wall carbon nanotubes, Chem. Commun., 2002, 4, 366–367. DOI:10.1039/B110690B
  • Kannan R.; Bipinlal U.; Kurungot, S. Enhanced electrocatalytic performance of functionalized carbon nanotube electrodes for oxygen reduction in proton exchange membrane fuel cells, Phys. Chem. Chem. Phys., 2011, 13, 10312–10317. DOI: 10.1039/C0CP02853C
  • Sainsbury, T.; Fitzmaurice, D. Templated Assembly of Semiconductor and Insulator Nanoparticles at the Surface of Covalently Modified Multiwalled Carbon Nanotubes, Chem. Mater., 2004, 16, 3780–3790. DOI: 10.1021/cm049151h
  • Zhao, B.; Hu, H.; Mandal, S. K.; Haddon, R. A Bone Mimic Based on the Self-Assembly of Hydroxyapatite on Chemically Functionalized Single-Walled Carbon Nanotubes, Chem. Mater., 2005, 17, 3235–3241. DOI: 10.1021/cm0500399
  • Maho, A.; Detriche, S.; Delhalle, J.; Mekhalif, Z. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces, Mater. Sci. Engin. C., 2013, 33, 2686–2697. DOI: 10.1016/j.msec.2013.02.025
  • Oki, A.; Adams, L.; Khabashesku, V.; Edigin, Y.; Biney, P.; Luo, Z. Dispersion of aminoalkylsilyl ester or amine alkyl-phosphonic acid side wall functionalized carbon nanotubes in silica using sol–gel processing, Mater. Lett., 2008, 62, 918–922. https://doi.org/10.1016/j.matlet.2007.07.030
  • Dehghani, F.; Sardarian, A. R.; Doroodmand, M. M. Preparation and characterization of multi-walled carbon nanotubes (MWCNTs), functionalized with phosphonic acid (MWCNTs–C–PO3 h2) and its application as a novel, efficient, heterogeneous, highly selective and reusable catalyst for acetylation of alcohols, phenols, aromatic amines, and thiols, J. Iran. Chem. Soc., 2014, 11, 673–684. DOI 10.1007/s13738-013-0339-9
  • El-Sheikh, A. H.; Al-Degs, Y. S.; Al-As'ad, R. M.; Sweileh, J. A. Effect of oxidation and geometrical dimensions of carbon nanotubes on Hg(II) sorption and preconcentration from real waters, Desalination, 2011, 270, 214–220. https://doi.org/10.1016/j.desal.2010.11.048
  • Chen, P. H.; Hsu, Ch-F.; Tsai, D. D-W.; Lu, Y. M.; Huang, W. J. Adsorption of mercury from water by modified multi-walled carbon nanotubes: adsorption behaviour and interference resistance by coexisting anions, Environ. Technol., 2014, 35, 1935–1944. DOI:10.1080/09593330.2014.886627
  • Bandaru, N. M.; Reta, N.; Dalal, H.; Ellis, A. V.; Shapter, J.; Voelcker N. H. Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes, J. Hazard. Mater., 2013, 261, 534–541. https://doi.org/10.1016/j.jhazmat.2013.07.076
  • Hadavifar, M.; Bahramifar, N.; Younesi, H.; Rastakhiz, M.; Qin, L.; Jimmy, Y.; Eftekhari, E. Removal of mercury(II) and cadmium(II) ions from synthetic wastewater by a newly synthesized amino and thiolated multi-walled carbon nanotubes, J. Taiwan Inst. Chem. Eng., 2016, 67, 397–405. https://doi.org/10.1016/j.jtice.2016.08.029
  • Gupta, A.; Vidyarthi, S. R.; Sankararamakrishnan, N. Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes, J. Hazard. Mater., 2014, 274, 132–144. DOI: 10.1016/j.jhazmat.2014.03.020
  • Kieczykowski, G. R.; Jobson, R. B.; Melillo D. G.; Reinhold, D. F.; Grenda, V. J.; Shinkai, I. Preparation of (4-Amino-1-Hydroxybutylidene)bisphosphonic Acid Sodium Salt, MK-217 (Alendronate Sodium). An Improved Procedure for the Preparation of 1-Hydroxy-1,1-bisphosphonic Acids, J. Org. Chem., 1995, 60, 8310–8312. DOI: 10.1021/jo00130a036
  • Srinivasa Rao, V. N. D.; Dandala, R.; Lenin, R.; Sivakumaran, M.; Shivashankar, S.; Naidu, A. A facile one pot synthesis of bisphosphonic acids and their sodium salts from nitriles, ARKIVOC, 2007, XIV, 34–38. DOI: https://doi.org/10.3998/ark.5550190.0008.e05
  • Lecouvey, M.; Leroux, Y. Synthesis of 1-Hydroxy-1,1-bisphosphonates. Heteroatom Chem., 2000, 11, 556–561. DOI: 10.1002/1098-1071(2000)11:7<556::AID-HC15>3.0.CO;2-N
  • Romanenko, V. D.; Kukhar, V. P. 1-Amino-1,1-bisphosphonates. Fundamental syntheses and new developments, ARKIVOC, 2012, IV, 127–166. DOI: https://doi.org/10.3998/ark.5550190.0013.411
  • Chmielewska, E.; Kafarski P. Synthetic Procedures Leading towards Aminobisphosphonates, Molecules, 2016, 21, 1474–26. DOI: 10.3390/molecules21111474
  • Żelechowska K.; Prześniak-Welenc M.; Łapiński M.; Kondratowicz I.; Miruszewski T. Fully scalable, one-pot method for phosphonic graphene derivative production, Beilstein J. Nanotechnol., 2017, 8, 1094–1103. DOI: 10.3762/bjnano.8.111
  • Zhao, X.; Ando, Y.; Qin, L-Ch.; Kataura, H.; Maniwa, Y.; Saito, R. Radial breathing modes of multiwalled carbon nanotubes, Chem. Phys. Lett., 2002 2002, 361, 169–174. https://doi.org/10.1016/S0009-2614(02)00955-7
  • Li, Y.; Li, W.; Liu, Q.; Meng, H.; Lu, Y.; Li, Ch. Alkynyl carbon materials as novel and efficient sorbents for the adsorption of mercury(II) from wastewater, J Environ Sci., 2017, in press. https://doi.org/10.1016/j.jes.2016.12.016
  • AlOmar, M. K.; Alsaadi, M. A.; Jassam, T. M.; Akib, S.; Hashim, M.A. Novel deep eutectic solvent-functionalized carbon nanotubes adsorbent for mercury removal from water, J Colloid Interf Sci., 2017, 497, 413–421. https://doi.org/10.1016/j.jcis.2017.03.014
  • Hadi, P.; To M-H.; Hui, Ch-W.; Lin, C.Sz.K.; McKay, G. Aqueous mercury adsorption by activated carbons, Water Res., 2015, 73, 37–55. https://doi.org/10.1016/j.watres.2015.01.018
  • Singha Deb, A. K.; Dwivedi, V.; Dasgupta, K.; Ali, Sk. M.; Shenoy, K. T. Novel amidoamine functionalized multi-walled carbon nanotubes for removal of mercury(II) ions from wastewater: Combined experimental and density functional theoretical approach, Chem. Eng. J., 2017, 313, 899–911. https://doi.org/10.1016/j.cej.2016.10.126
  • Moghaddam, H.K; Pakizeh, M. Experimental study on mercury ions removal from aqueous solution by MnO2/CNTs nanocomposite adsorbent, J. Ind. Eng. Chem., 2015, 21, 221–229. https://doi.org/10.1016/j.jiec.2014.02.028

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.